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CHAPTER 1

NONLINEAR PROGRAMMING

“Since the fabric of the universe is most perfect, and is the work of a most wise Creator, nothing
whatsoever takes place in the universe in which some form of maximum and minimum does not
appear.”

—Leonhard Euler

1.1 INTRODUCTION

In this chapter, we introduce the nonlinear programming (NLP) problem. Our purpose is to
provide some background on nonlinear problems; indeed, an exhaustive discussion of both
theoretical and practical aspects of nonlinear programming can be the subject matter of an
entire book.

There are several reasons for studying nonlinear programming in an optimal control class.
First and foremost, anyone interested in optimal control should know about a number of
fundamental results in nonlinear programming. As optimal control problems are optimiza-
tion problems in (infinite-dimensional) functional spaces, while nonlinear programming
are optimization problems in Euclidean spaces, optimal control can indeed be seen as a
generalization of nonlinear programming.

Second and as we shall see in Chapter 3, NLP techniques are used routinely and are
particularly efficient in solving optimal control problems. In the case of a discrete control
problem, i.e., when the controls are exerted at discrete points, the problem can be directly
stated as a NLP problem. In a continuous control problem, on the other hand, i.e., when
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2 NONLINEAR PROGRAMMING

the controls are functions to be exerted over a prescribed planning horizon, an approximate
solution can be found by solving a NLP problem.

Throughout this section, we shall consider the following NLP problem:

min
x

f(x)

s.t. g(x) ≤ 0
h(x) = 0
x ∈ X

(NLP)

whereX is a subset of IRnx , x is a vector of nx components x1, . . . , xnx , and f : X → IR,
g : X → IRng and h : X → IRnh are defined on X .

The function f is usually called the objective function or criterion function. Each of the
constraints gi(x) ≤ 0, i = 1, . . . , ng, is called an inequality constraint, and each of the
constraints hi(x) = 0, i = 1, . . . , nh, is called an equality constraint. Note also that the
setX typically includes lower and upper bounds on the variables; the reason for separating
variable bounds from the other inequality constraints is that they can play a useful role in
some algorithms, i.e., they are handled in a specific way. A vector x ∈ X satisfying all
the constraints is called a feasible solution to the problem; the collection of all such points
forms the feasible region. The NLP problem, then, is to find a feasible point x? such that
f(x) ≥ f(x?) for each feasible point x. Needless to say, a NLP problem can be stated as a
maximization problem, and the inequality constraints can be written in the form g(x) ≥ 0.

Example 1.1. Consider the following problem

min
x

(x1 − 3)2 + (x2 − 2)2

s.t. x2
1 − x2 − 3 ≤ 0

x2 − 1 ≤ 0
−x1 ≤ 0.

The objective function and the three inequality constraints are:

f(x1, x2) = (x1 − 3)2 + (x2 − 2)2

g1(x1, x2) = x2
1 − x2 − 3

g2(x1, x2) = x2 − 1

g3(x1, x2) = −x1.

Fig. 1.1. illustrates the feasible region. The problem, then, is to find a point in the feasible
region with the smallest possible value of (x1 − 3)2 + (x2− 2)2. Note that points (x1, x2)
with (x1 − 3)2 + (x2 − 2)2 = c are circles with radius

√
c and center (3, 2). This circle is

called the contour of the objective function having the value c. In order to minimize c, we
must find the circle with the smallest radius that intersects the feasible region. As shown
in Fig. 1.1., the smallest circle corresponds to c = 2 and intersects the feasible region at
the point (2, 1). Hence, the optimal solution occurs at the point (2, 1) and has an objective
value equal to 2.

The graphical approach used in Example 1.1 above, i.e., find an optimal solution by de-
termining the objective contour with the smallest objective value that intersects the feasible
region, is only suitable for small problems; it becomes intractable for problems containing
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Figure 1.1. Geometric solution of a nonlinear problem.

more than three variables, as well as for problems having complicated objective and/or
constraint functions.

This chapter is organized as follows. We start by defining what is meant by optimality,
and give conditions under which a minimum (or a maximum) exists for a nonlinear program
in � 1.2. The special properties of convex programs are then discussed in � 1.3. Then, both
necessary and sufficient conditions of optimality are presented for NLP problems. We
successively consider unconstrained problems ( � 1.4), problems with inequality constraints
( � 1.5), and problems with both equality and inequality constraints ( � 1.7). Finally, several
numerical optimization techniques will be presented in � 1.8, which are instrumental to solve
a great variety of NLP problems.

1.2 DEFINITIONS OF OPTIMALITY

A variety of different definitions of optimality are used in different contexts. It is important
to understand fully each definition and the context within which it is appropriately used.

1.2.1 Infimum and Supremum

Let S ⊂ IR be a nonempty set.

Definition 1.2 (Infimum, Supremum). The infimum of S, denoted as inf S, provided it
exists, is the greatest lower bound for S, i.e., a number α satisfying:

(i) z ≥ α ∀z ∈ S,

(ii) ∀ᾱ > α, ∃z ∈ S such that z < ᾱ.

Similarly, the supremum of S, denoted as supS, provided it exists, is the least upper bound
for S, i.e., a number α satisfying:

(i) z ≤ α ∀z ∈ S,
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(ii) ∀ᾱ < α, ∃z ∈ S such that z > ᾱ.

The first question one may ask concerns the existence of infima and suprema in IR. In
particular, one cannot prove that in IR, every set bounded from above has a supremum, and
every set bounded from below has an infimum. This is an axiom, known as the axiom of
completeness:

Axiom 1.3 (Axiom of Completeness). If a nonempty subset of real numbers has an upper
bound, then it has a least upper bound. If a nonempty subset of real numbers has a lower
bound, it has a greatest lower bound.

It is important to note that the real number inf S (resp. supS), with S a nonempty set in
IR bounded from below (resp. from above), although it exist, need not be an element of S.

Example 1.4. Let S = (0,+∞) = {z ∈ IR : z > 0}. Clearly, inf S = 0 and 0 /∈ S.

Notation 1.5. Let S := {f(x) : x ∈ D} be the image of the feasible set D ⊂ IRn of an
optimization problem under the objective function f . Then, the notation

inf
x∈D

f(x) or inf{f(x) : x ∈ D}

refers to the number inf S. Likewise, the notation

sup
x∈D

f(x) or sup{f(x) : x ∈ D}

refers to supS.

Clearly, the numbers inf S and supS may not be attained by the value f(x) at any
x ∈ D. This is illustrated in an example below.

Example 1.6. Clearly, inf{exp(x) : x ∈ (0,+∞)} = 1, but exp(x) > 1 for all x ∈
(0,+∞).

By convention, the infimum of an empty set is +∞, while the supremum of an empty
set is −∞. That is, if the values±∞ are allowed, then infima and suprema always exist.

1.2.2 Minimum and Maximum

Consider the standard problem formulation

min
x∈D

f(x)

where D ⊂ IRn denotes the feasible set. Any x ∈ D is said to be a feasible point;
conversely, any x ∈ IRn \D := {x ∈ IRn : x /∈ D} is said to be infeasible.
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Definition 1.7 ((Global) Minimum, Strict (Global) Minimum). A point x? ∈ D is said
to be a (global)1 minimum of f on D if

f(x) ≥ f(x?) ∀x ∈ D, (1.1)

i.e., a minimum is a feasible point whose objective function value is less than or equal to
the objective function value of all other feasible points. It is said to be a strict (global)
minimum of f on D if

f(x) > f(x?) ∀x ∈ D, x 6= x?.

A (global) maximum is defined by reversing the inequality in Definition 1.7:

Definition 1.8 ((Global) Maximum, Strict (Global) Maximum). A point x? ∈ D is said
to be a (global) maximum of f on D if

f(x) ≤ f(x?) ∀x ∈ D. (1.2)

It is said to be a strict (global) maximum of f on D if

f(x) < f(x?) ∀x ∈ D, x 6= x?.

The important distinction between minimum/maximum and infimum/supremum is that
the value min{f(x) : x ∈ D} must be attained at one or more points x ∈ D, whereas
the value inf{f(x) : x ∈ D} does not necessarily have to be attained at any points x ∈ D.
Yet, if a minimum (resp. maximum) exists, then its optimal value will equal the infimum
(resp. supremum).

Note also that if a minimum exists, it is not necessarily unique. That is, there may be
multiple or even an infinite number of feasible points that satisfy the inequality (1.1) and
are thus minima. Since there is in general a set of points that are minima, the notation

argmin{f(x) : x ∈ D} := {x ∈ D : f(x) = inf{f(x) : x ∈ D}}

is introduced to denote the set of minima; this is a (possibly empty) set in IRn.2

A minimum x? is often referred to as an optimal solution, a global optimal solution,
or simply a solution of the optimization problem. The real number f(x?) is known as the
(global) optimal value or optimal solution value. Regardless of the number of minima,
there is always a unique real number that is the optimal value (if it exists). (The notation
min{f(x) : x ∈ D} is used to refer to this real value.)

Unless the objective function f and the feasible set D possess special properties (e.g.,
convexity), it is usually very hard to devise algorithms that are capable of locating or
estimating a global minimum or a global maximum with certainty. This motivates the
definition of local minima and maxima, which, by the nature of their definition in terms of
local information, are much more convenient to locate with an algorithm.

Definition 1.9 (Local Minimum, Strict Local Minimum). A point x? ∈ D is said to be
a local minimum of f on D if

∃ε > 0 such that f(x) ≥ f(x?) ∀x ∈ Bε (x?) ∩D.
1Strictly, it is not necessary to qualify minimum with ‘global’ because minimum means a feasible point at which
the smallest objective function value is attained. Yet, the qualification global minimum is often made to emphasize
that a local minimum is not adequate.

2The notation x̄ = arg min{f(x) : x ∈ D} is also used by some authors. In this case, arg min{f(x) :
x ∈ D} should be understood as a function returning a point x̄ that minimizes f on D. (See, e.g.,
http://planetmath.org/encyclopedia/ArgMin.html.)
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x? is said to be a strict local minimum if

∃ε > 0 such that f(x) > f(x?) ∀x ∈ Bε (x?) \ {x?} ∩D.

The qualifier ‘local’ originates from the requirement that x? be a minimum only for
those feasible points in a neighborhood around the local minimum.

Remark 1.10. Trivially, the property of x? being a global minimum implies that x? is also
a local minimum because a global minimum is local minimum with ε set arbitrarily large.

A local maximum is defined by reversing the inequalities in Definition 1.9:

Definition 1.11 (Local Maximum, Strict Local Maximum). A point x? ∈ D is said to
be a local maximum of f on D if

∃ε > 0 such that f(x) ≤ f(x?) ∀x ∈ Bε (x?) ∩D.

x? is said to be a strict local maximum if

∃ε > 0 such that f(x) < f(x?) ∀x ∈ Bε (x?) \ {x?} ∩D.

Remark 1.12. It is important to note that the concept of a global minimum or a global
maximum of a function on a set is defined without the notion of a distance (or a norm in the
case of a vector space). In contrast, the definition of a local minimum or a local maximum
requires that a distance be specified on the set of interest. In IRnx , norms are equivalent, and
it is readily shown that local minima (resp. maxima) in (IRnx , ‖ · ‖α) match local minima
(resp. maxima) in (IRnx , ‖ · ‖β), for any two arbitrary norms ‖ · ‖α and ‖ · ‖β in IRnx (e.g.,
the Euclidean norm ‖ ·‖2 and the infinite norm ‖ ·‖∞). Yet, this nice property does not hold
in linear functional spaces, as those encountered in problems of the calculus of variations
( � 2) and optimal control ( � 3).

Fig. 1.2. illustrates the various definitions of minima and maxima. Point x1 is the unique
global maximum; the objective value at this point is also the supremum. Points a, x2, and
b are strict local minima because there exists a neighborhood around each of these point
for which a, x2, or b is the unique minimum (on the intersection of this neighborhood with
the feasible set D). Likewise, point x3 is a strict local maximum. Point x4 is the unique
global minimum; the objective value at this point is also the infimum. Finally, point x5 is
simultaneously a local minimum and a local maximum because there are neighborhoods
for which the objective function remains constant over the entire neighborhood; it is neither
a strict local minimum, nor a strict local maximum.

Example 1.13. Consider the function

f(x) =

{

+1 if x < 0
−1 otherwise. (1.3)

The point x? = −1 is a local minimum for

min
x∈[−2,2]

f(x)

with value f(x?) = +1. The optimal value of (1.3) is −1, and arg min{f(x) : x ∈
[−2, 2]} = [0, 2].
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Figure 1.2. The various types of minima and maxima.

1.2.3 Existence of Minima and Maxima

A crucial question when it comes to optimizing a function on a given set, is whether
a minimizer or a maximizer exist for that function in that set. Strictly, a minimum or
maximum should only be referred to when it is known to exist.

Fig 1.3. illustrates three instances where a minimum does not exist. In Fig 1.3.(a), the
infimum of f over S := (a, b) is given by f(b), but since S is not closed and, in particular,
b /∈ S, a minimum does not exist. In Fig 1.3.(b), the infimum of f overS := [a, b] is given by
the limit of f(x) as x approaches c from the left, i.e., inf{f(x) : x ∈ S} = limx→c− f(x).
However, because f is discontinuous at c, a minimizing solution does not exist. Finally,
Fig 1.3.(c) illustrates a situation within which f is unbounded over the unbounded set
S := {x ∈ IR : x ≥ a}.

PSfrag replacements

(a) (b) (c)

f f
f

f(c)

aa ab bc +∞

Figure 1.3. The nonexistence of a minimizing solution.

We now formally state and prove the result that if S is nonempty, closed, and bounded,
and if f is continuous on S, then, unlike the various situations of Fig. 1.3., a minimum
exists.
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Theorem 1.14 (Weierstrass’ Theorem). Let S be a nonempty, compact set, and let f :
S → IR be continuous on S. Then, the problem min{f(x) : x ∈ S} attains its minimum,
that is, there exists a minimizing solution to this problem.

Proof. Since f is continuous onS andS is both closed and bounded, f is bounded below on
S. Consequently, since S 6= ∅, there exists a greatest lower bound α := inf{f(x : x ∈ S}
(see Axiom 1.3). Now, let 0 < ε < 1, and consider the set Sk := {x ∈ S : α ≤ f(x) ≤
α + εk} for k = 1, 2, . . .. By the definition of an infimum, Sk 6= ∅ for each k, and so we
may construct a sequence of points {xk} ⊂ S by selecting a point xk for each k = 1, 2, . . ..
Since S is bounded, there exists a convergent subsequence {xk}K ⊂ S indexed by the set
K ⊂ IN; let x̄ denote its limit. By the closedness ofS, we have x̄ ∈ S; and by the continuity
of f on S, since α ≤ f(xk) ≤ α+ εk, we have α = limk→∞,k∈K f(xk) = f(x̄). Hence,
we have shown that there exist a solution x̄ ∈ S such that f(x̄) = α = inf{f(x : x ∈ S},
i.e., x̄ is a minimizing solution.

The hypotheses of Theorem 1.14 can be justified as follows: (i) the feasible set must
be nonempty, otherwise there are no feasible points at which to attain the minimum; (ii)
the feasible set must contain its boundary points, which is ensured by assuming that the
feasible set is closed; (iii) the objective function must be continuous on the feasible set,
otherwise the limit at a point may not exist or be different from the value of the function at
that point; and (iv) the feasible set must be bounded because otherwise even a continuous
function can be unbounded on the feasible set.

Example 1.15. Theorem 1.14 establishes that a minimum (and a maximum) of

min
x∈[−1,1]

x2

exists, since [−1, 1] is a nonempty, compact set and x 7→ x2 is a continuous function on
[−1, 1]. On the other hand, minima can still exist even though the set is not compact or the
function is not continuous, for Theorem 1.14 only provides a sufficient condition. This is
the case for the problem

min
x∈(−1,1)

x2,

which has a minimum at x = 0. (See also Example 1.13.)

Example 1.16. Consider the NLP problem of Example 1.1 (p. 2),

min
x

(x1 − 3)2 + (x2 − 2)2

s.t. x2
1 − x2 − 3 ≤ 0

x2 − 1 ≤ 0
−x1 ≤ 0.

The objective function being continuous and the feasible region being nonempty, closed and
bounded, the existence of a minimum to this problem directly follows from Theorem 1.14.
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1.3 CONVEX PROGRAMMING

A particular class of nonlinear programs is that of convex programs (see Appendix A.3 for
a general overview on convex sets and convex functions):

Definition 1.17 (Convex Program). Let C be a nonempty convex set in IRn, and let
f : C → IR be convex on C. Then,

min
x∈C

f(x)

is said to be a convex program (or a convex optimization problem).

Convex programs possess nicer theoretical properties than general nonconvex problems.
The following theorem is a fundamental result in convex programming:

Theorem 1.18. Let x? be a local minimum of a convex program. Then, x? is also a global
minimum.

Proof. x? being a local minimum,

∃ε > 0 such that f(x) ≥ f(x?), ∀x ∈ Bε (x?) .

By contradiction, suppose that x? is not a global minimum. Then,

∃x̄ ∈ C such that f(x̄) < f(x?). (1.4)

Let λ ∈ (0, 1) be chosen such that y := λx̄ + (1− λ)x? ∈ Bε (x?). By convexity of C, y
is in C. Next, by convexity of f on C and (1.4),

f(y) ≤ λf(x̄) + (1− λ)f(x?) < λf(x?) + (1− λ)f(x?) = f(x?),

hence contradicting the assumption that x? is a local minimum.

Example 1.19. Consider once again the NLP problem of Example 1.1 (p. 2),

min
x

(x1 − 3)2 + (x2 − 2)2

s.t. x2
1 − x2 − 3 ≤ 0

x2 − 1 ≤ 0
−x1 ≤ 0.

The objective function f and the inequality constraints g1, g2 and g3 being convex, every
local solution to this problem is also a global solution by Theorem 1.18; henceforth, (1, 2)
is a global solution and the global solution value is 4.

In convex programming, any local minimum is therefore a local optimum. This is a
powerful result that makes any local optimization algorithm a global optimization algo-
rithm when applied to a convex optimization problem. Yet, Theorem 1.18 only gives a
sufficient condition for that property to hold. That is, a nonlinear program with nonconvex
participating functions may not necessarily have local minima that are not global minima.
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1.4 UNCONSTRAINED PROBLEMS

An unconstrained problem is a problem of the form to minimize (or maximize)f(x) without
any constraints on the variables x:

min{f(x) : x ∈ IRnx}.

Note that the feasible domain of x being unbounded, Weierstrass’ Theorem 1.14 does not
apply, and one does not know with certainty, whether a minimum actually exists for that
problem.3 Moreover, even if the objective function is convex, one such minimum may not
exist (think of f : x 7→ expx!). Hence, we shall proceed with the theoretically unattractive
task of seeking minima and maxima of functions which need not have them!

Given a point x in IRnx , necessary conditions help determine whether or not a point is
a local or a global minimum of a function f . For this purpose, we are mostly interested in
obtaining conditions that can be checked algebraically.

Definition 1.20 (Descent Direction). Suppose that f : IRnx → IR is continuous at x̄. A
vector d ∈ IRnx is said to be a descent direction, or an improving direction, for f at x̄ if

∃δ > 0 : f(x̄ + λd) < f(x̄) ∀λ ∈ (0, δ).

Moreover, the cone of descent directions at x̄, denoted by F(x̄), is given by

F(x̄) := {d : ∃δ > 0 such that f(x̄ + λd) < f(x̄) ∀λ ∈ (0, δ)}.

The foregoing definition provides a geometrical characterization for a descent direction.
yet, an algebraic characterization for a descent direction would be more useful from a
practical point of view. In response to this, let us assume that f is differentiable and define
the following set at x̄:

F0(x̄) := {d : ∇f(x̄)
T
d < 0}.

This is illustrated in Fig. 1.4., where the half-space F0(x̄) and the gradient ∇f(x̄) are
translated from the origin to x̄ for convenience.

The following lemma proves that every element d ∈ F0(x̄) is a descent direction at x̄.

Lemma 1.21 (Algebraic Characterization of a Descent Direction). Suppose that f :

IRnx → IR is differentiable at x̄. If there exists a vector d such that ∇f(x̄)Td < 0, then d
is a descent direction for f at x̄. That is,

F0(x̄) ⊆ F(x̄).

Proof. f being differentiable at x̄,

f(x̄ + λd) = f(x̄) + λ∇f(x̄)
T
d + λ‖d‖α(λd)

where limλ→0 α(λd) = 0. Rearranging the terms and dividing by λ 6= 0, we get

f(x̄ + λd)− f(x̄)

λ
= ∇f(x̄)

T
d + ‖d‖α(λd).

3For unconstrained optimization problems, the existence of a minimum can actually be guaranteed if the objective
objective function is such that lim‖x‖→+∞ f(x) = +∞ (O-coercive function).



UNCONSTRAINED PROBLEMS 11

PSfrag replacements
x̄

∇f(x̄)

F0(x̄)

contours of the
objective function

f decreases

Figure 1.4. Illustration of the set F0(x̄).

Since ∇f(x̄)Td < 0 and limλ→0 α(λd) = 0, there exists a δ > 0 such that ∇f(x̄)Td +
‖d‖α(λd) < 0 for all λ ∈ (0, δ).

We are now ready to derive a number of necessary conditions for a point to be a local
minimum of an unconstrained optimization problem.

Theorem 1.22 (First-Order Necessary Condition for a Local Minimum). Suppose that
f : IRnx → IR is differentiable at x?. If x? is a local minimum, then ∇f(x?) = 0.

Proof. The proof proceeds by contraposition. Suppose that ∇f(x?) 6= 0. Then, letting
d = −∇f(x?), we get ∇f(x?)

T
d = −‖∇f(x?)‖2 < 0. By Lemma 1.21,

∃δ > 0 : f(x? + λd) < f(x?) ∀λ ∈ (0, δ),

hence contradicting the assumption that x? is a local minimum for f .

Remark 1.23 (Obtaining Candidate Solution Points). The above condition is called a
first-order necessary condition because it uses the first-order derivatives off . This condition
indicates that the candidate solutions to an unconstrained optimization problem can be found
by solving a system of nx algebraic (nonlinear) equations. Points x̄ such that ∇f(x̄) = 0
are known as stationary points. Yet, a stationary point need not be a local minimum as
illustrated by the following example; it could very well be a local maximum, or even a
saddle point.

Example 1.24. Consider the problem

min
x∈IR

x2 − x4.

The gradient vector of the objective function is given by

∇f(x) = 2x− 4x3,

which has three distinct roots x?1 = 0, x?2 = 1√
2

and x?2 = − 1√
2

. Out of these values,
x?1 gives the smallest cost value, f(x?1) = 0. Yet, we cannot declare x?1 to be the global
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minimum, because we do not know whether a (global) minimum exists for this problem.
Indeed, as shown in Fig. 1.5., none of the stationary points is a global minimum, because f
decreases to −∞ as |x| → ∞.
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Figure 1.5. Illustration of the objective function in Example 1.24.

More restrictive necessary conditions can also be derived in terms of the Hessian matrix
H whose elements are the second-order derivatives of f . One such second-order condition
is given below.

Theorem 1.25 (Second-Order Necessary Conditions for a Local Minimum). Suppose
that f : IRnx → IR is twice differentiable at x?. If x? is a local minimum, then ∇f(x?) = 0
and H(x?) is positive semidefinite.

Proof. Consider an arbitrary direction d. Then, from the differentiability of f at x?, we
have

f(x? + λd) = f(x?) + λ∇f(x?)
T
d +

λ2

2
dTH(x?)d + λ2‖d‖2α(λd), (1.5)

where limλ→0 α(λd) = 0. Since x? is a local minimum, from Theorem 1.22, ∇f(x?) = 0.
Rearranging the terms in (1.5) and dividing by λ2, we get

f(x? + λd)− f(x?)

λ2
=

1

2
dTH(x?)d + ‖d‖2α(λd).

Since x? is a local minimum, f(x? + λd) ≥ f(x?) for λ sufficiently small. By taking the
limit as λ → 0, it follows that dTH(x?)d ≥ 0. Since d is arbitrary, H(x?) is therefore
positive semidefinite.

Example 1.26. Consider the problem

min
x∈IR2

x1x2.



UNCONSTRAINED PROBLEMS 13

The gradient vector of the objective function is given by

∇f(x) =
[

x2 x1

]T

so that the only stationary point in IR2 is x̄ = (0, 0). Now, consider the Hessian matrix of
the objective function at x̄:

H(x̄) =

(

0 1
1 0

)

∀x ∈ IR2.

It is easily checked that H(x̄) is indefinite, therefore, by Theorem 1.25, the stationary point
x̄ is not a (local) minimum (nor is it a local maximum). Such stationary points are called
saddle points (see Fig. 1.6. below).
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Figure 1.6. Illustration of the objective function in Example 1.26.

The conditions presented in Theorems 1.22 and 1.25 are necessary conditions. That is,
they must hold true at every local optimal solution. Yet, a point satisfying these conditions
need not be a local minimum. The following theorem gives sufficient conditions for a
stationary point to be a global minimum point, provided the objective function is convex
on IRnx .

Theorem 1.27 (First-Order Sufficient Conditions for a Strict Local Minimum). Sup-
pose that f : IRnx → IR is differentiable at x? and convex on IRnx . If ∇f(x?) = 0, then
x? is a global minimum of f on IRnx .

Proof. f being convex on IRnx and differentiable at x?, by Theorem A.17, we have

f(x) ≥ f(x?) + ∇f(x?)
T
[x− x?] ∀x ∈ IRnx .

But since x? is a stationary point,

f(x) ≥ f(x?) ∀x ∈ IRnx .
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The convexity condition required by the foregoing theorem is actually very restrictive,
in the sense that many practical problems are nonconvex. In the following theorem, we
give sufficient conditions for characterizing a local minimum point, provided the objective
function is strictly convex in a neighborhood of that point.

Theorem 1.28 (Second-Order Sufficient Conditions for a Strict Local Minimum). Sup-
pose that f : IRnx → IR is twice differentiable at x?. If ∇f(x?) = 0 and H(x?) is positive
definite, then x? is a local minimum of f .

Proof. f being twice differentiable at x?, we have

f(x? + d) = f(x?) + ∇f(x?)
T
d +

1

2
dTH(x?)d + ‖d‖2α(d),

for each d ∈ IRnx , where limd→0 α(d) = 0. Let λL denote the smallest eigenvalue of
H(x?). Then, H(x?) being positive definite we have λL > 0, and dTH(x?)d ≥ λL‖d‖2.
Moreover, from ∇f(x?) = 0, we get

f(x? + d)− f(x?) ≥
[

λ

2
+ α(d)

]

‖d‖2.

Since limd→0 α(d) = 0,

∃η > 0 such that |α(d)| < λ

4
∀d ∈ Bη (0) ,

and finally,

f(x? + d)− f(x?) ≥ λ

4
‖d‖2 > 0 ∀d ∈ Bη (0) \ {0},

i.e., x? is a strict local minimum of f .

Example 1.29. Consider the problem

min
x∈IR2

(x1 − 1)2 − x1x2 + (x2 − 1)2.

The gradient vector and Hessian matrix at x̄ = (2, 2) are given by

∇f(x̄) =
[

2(x̄1 − 1)− x̄2 2(x̄2 − 1)− x̄1

]T
= 0

H(x̄) =

[

2 −1
−1 2

]

� 0

Hence, by Theorem 1.25, x̄ is a local minimum of f . (x̄ is also a global minimum of f on
IR2 since f is convex.) The objective function is pictured in Fig. 1.7. below.

We close this subsection by reemphasizing the fact that every local minimum of an
unconstrained optimization problem min{f(x : x ∈ IRnx} is a global minimum if f is a
convex function on IRnx (see Theorem 1.18). Yet, convexity of f is not a necessary condition
for each local minimum to be a global minimum. As just an example, consider the function
x 7→ exp

(

− 1
x2

)

(see Fig 1.8.). In fact, such functions are said to be pseudoconvex.
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Figure 1.7. Illustration of the objective function in Example 1.29.

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10

PSfrag replacements

x

ex
p
(−

1 x
2
)

Figure 1.8. Plot of the pseudoconvex function x 7→ exp
`

− 1
x2

´

.

1.5 PROBLEMS WITH INEQUALITY CONSTRAINTS

In practice, few problems can be formulated as unconstrained programs. This is because the
feasible region is generally restricted by imposing constraints on the optimization variables.

In this section, we first present theoretical results for the problem to:

minimize f(x)

subject to x ∈ S,

for a general set S (geometric optimality conditions). Then, we let S be more specifically
defined as the feasible region of a NLP of the form to minimize f(x), subject to g(x) ≤ 0
and x ∈ X , and derive the Karush-Kuhn-Tucker (KKT) conditions of optimality.
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1.5.1 Geometric Optimality Conditions

Definition 1.30 (Feasible Direction). Let S be a nonempty set in IRnx . A vector d ∈ IRnx ,
d 6= 0, is said to be a feasible direction at x̄ ∈ cl (S) if

∃δ > 0 such that x̄ + ηd ∈ S ∀η ∈ (0, δ).

Moreover, the cone of feasible directions at x̄, denoted by D(x̄), is given by

D(x̄) := {d 6= 0 : ∃δ > 0 such that x̄ + ηd ∈ S ∀η ∈ (0, δ)}.

From the above definition and Lemma 1.21, it is clear that a small movement from x̄
along a direction d ∈ D(x̄) leads to feasible points, whereas a similar movement along a
direction d ∈ F0(x̄) leads to solutions of improving objective value (see Definition 1.20).
As shown in Theorem 1.31 below, a (geometric) necessary condition for local optimality
is that: “Every improving direction is not a feasible direction.” This fact is illustrated in
Fig. 1.9., where both the half-space F0(x̄) and the cone D(x̄) (see Definition A.10) are
translated from the origin to x̄ for clarity.
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Figure 1.9. Illustration of the (geometric) necessary condition F0(x̄) ∩ D(x̄) = ∅.

Theorem 1.31 (Geometric Necessary Condition for a Local Minimum). Let S be a
nonempty set in IRnx , and let f : IRnx → IR be a differentiable function. Suppose that x̄ is a
local minimizer of the problem to minimize f(x) subject to x ∈ S. Then, F0(x̄)∩D(x̄) = ∅.
Proof. By contradiction, suppose that there exists a vector d ∈ F0(x̄) ∩ D(x̄), d 6= 0.
Then, by Lemma 1.21,

∃δ1 > 0 such that f(x̄ + ηd) < f(x̄) ∀η ∈ (0, δ1).

Moreover, by Definition 1.30,

∃δ2 > 0 such that x̄ + ηd ∈ S ∀η ∈ (0, δ2).
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Hence,
∃x ∈ Bη (x̄) ∩ S such that f(x̄ + ηd) < f(x̄),

for every η ∈ (0,min{δ1, δ2}), which contradicts the assumption that x̄ is a local minimum
of f on S (see Definition 1.9).

1.5.2 KKT Conditions

We now specify the feasible region as

S := {x : gi(x) ≤ 0 ∀i = 1, . . . , ng},

where gi : IRnx → IR, i = 1, . . . , ng, are continuous functions. In the geometric optimality
condition given by Theorem 1.31, D(x̄) is the cone of feasible directions. From a practical
viewpoint, it is desirable to convert this geometric condition into a more usable condition
involving algebraic equations. As Lemma 1.33 below indicates,we can define a cone D0(x̄)
in terms of the gradients of the active constraints at x̄, such that D0(x̄) ⊆ D(x̄). For this,
we need the following:

Definition 1.32 (Active Constraint, Active Set). Let gi : IRnx → IR, i = 1, . . . , ng, and
consider the set S := {x : gi(x) ≤ 0, i = 1, . . . , ng}. Let x̄ ∈ S be a feasible point. For
each i = 1, . . . , ng , the constraint gi is said to active or binding at x̄ if gi(x̄) = 0; it is said
to be inactive at x̄ if gi(x̄) < 0. Moreover,

A(x̄) := {i : gi(x̄) = 0},

denotes the set of active constraints at x̄.

Lemma 1.33 (Algebraic Characterization of a Feasible Direction). Let gi : IRnx → IR,
i = 1, . . . , ng be differentiable functions, and consider the set S := {x : gi(x) ≤ 0, i =
1, . . . , ng}. For any feasible point x̄ ∈ S, we have

D0(x̄) := {d : ∇gi(x̄)
T
d < 0 ∀i ∈ A(x̄)} ⊆ D(x̄).

Proof. Suppose D0(x̄) is nonempty, and let d ∈ D0(x̄). Since ∇gi(x̄)d < 0 for each
i ∈ A(x̄), then by Lemma 1.21, d is a descent direction for gi at x̄, i.e.,

∃δ2 > 0 such that gi(x̄ + ηd) < gi(x̄) = 0 ∀η ∈ (0, δ2), ∀i ∈ A(x̄).

Furthermore, since gi(x̄) < 0 and gi is continuous at x̄ (for it is differentiable) for each
i /∈ A(x̄),

∃δ1 > 0 such that gi(x̄ + ηd) < 0 ∀η ∈ (0, δ1), ∀i /∈ A(x̄).

Furthermore, Overall, it is clear that the points x̄+ηd are in S for all η ∈ (0,min{δ1, δ2}).
Hence, by Definition 1.30, d ∈ D(x̄).

Remark 1.34. This lemma together with Theorem 1.31 directly leads to the result that
F0(x̄) ∩D0(x̄) = ∅ for any local solution point x̄, i.e.,

argmin{f(x) : x ∈ S} ⊂ {x ∈ IRnx : F0(x̄) ∩D0(x̄) = ∅}.

The foregoing geometric characterization of local solution points applies equally well
to either interior points int (S) := {x ∈ IRnx : gi(x) < 0, ∀i = 1, . . . , ng}, or boundary
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points being at the boundary of the feasible domain. At an interior point, in particular, any
direction is feasible, and the necessary conditionF0(x̄)∩D0(x̄) = ∅ reduces to∇f(x̄) = 0,
which gives the same condition as in unconstrained optimization (see Theorem 1.22).

Note also that there are several cases where the condition F0(x̄)∩D0(x̄) = ∅ is satisfied
by non-optimal points. In other words, this condition is necessary but not sufficient for a
point x̄ to be a local minimum of f on S. For instance, any point x̄ with ∇gi(x̄) = 0 for
some i ∈ A(x̄) trivially satisfies the condition F0(x̄) ∩ D0(x̄) = ∅. Another example is
given below.

Example 1.35. Consider the problem

min
x∈IR2

f(x) := x2
1 + x2

2 (1.6)

s.t. g1(x) := x1 ≤ 0

g2(x) := −x1 ≤ 0.

Clearly, this problem is convex and x? = (0, 0)
T is the unique global minimum.

Now, let x̄ be any point on the line C := {x : x1 = 0}. Both constraints g1 and g2
are active at x̄, and we have ∇g1(x̄) = −∇g2(x̄) = (1, 0)T. Therefore, no direction
d 6= 0 can be found such that ∇g1(x̄)

T
d < 0 and ∇g2(x̄)

T
d < 0 simultaneously, i.e.,

D0(x̄) = ∅. In turn, this implies that F0(x̄)∩D0(x̄) = ∅ is trivially satisfied for any point
on C.

On the other hand, observe that the condition F0(x̄) ∩ D(x̄) = ∅ in Theorem 1.31
excludes all the points on C, but the origin, since a feasible direction at x̄ is given, e.g., by
d = (0, 1)

T.

Next, we reduce the geometric necessary optimality condition F0(x̄) ∩D0(x̄) = ∅ to a
statement in terms of the gradients of the objective function and of the active constraints.
The resulting first-order optimality conditions are known as the Karush-Kuhn-Tucker (KKT)
necessary conditions. Beforehand, we introduce the important concepts of a regular point
and of a KKT point.

Definition 1.36 (Regular Point (for a Set of Inequality Constraints)). Let gi : IRnx → IR,
i = 1, . . . , ng, be differentiable functions on IRnx and consider the set S := {x ∈ IRnx :
gi(x) ≤ 0, i = 1, . . . , ng}. A point x̄ ∈ S is said to be a regular point if the gradient
vectors ∇gi(x̄), i ∈ A(x̄), are linearly independent,

rank (∇gi(x̄), i ∈ A(x̄)) = |A(x̄)|.

Definition 1.37 (KKT Point). Let f : IRnx → IR and gi : IRnx → IR, i = 1, . . . , ng be
differentiable functions. Consider the problem to minimize f(x) subject to g(x) ≤ 0. If a
point (x̄, ν̄) ∈ IRnx × IRng satisfies the conditions:

∇f(x̄) + ν̄T
∇g(x̄) = 0 (1.7)

ν̄ ≥ 0 (1.8)
g(x̄) ≤ 0 (1.9)

ν̄Tg(x̄) = 0, (1.10)
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then (x̄, ν̄) is said to be a KKT point.

Remark 1.38. The scalars νi, i = 1, . . . , ng, are called the Lagrange multipliers. The
condition (1.7), i.e., the requirement that x̄ be feasible, is called the primal feasibility (PF)
condition; the conditions (1.8) and (1.9) are referred to as the dual feasibility (DF) condi-
tions; finally, the condition (1.10) is called the complementarity slackness4 (CS) condition.

Theorem 1.39 (KKT Necessary Conditions). Let f : IRnx → IR and gi : IRnx → IR,
i = 1, . . . , ng be differentiable functions. Consider the problem to minimize f(x) subject
to g(x) ≤ 0. If x? is a local minimum and a regular point of the constraints, then there
exists a unique vector ν? such that (x?,ν?) is a KKT point.

Proof. Since x? solves the problem, then there exists no direction d ∈ IRnx such that
∇f(x̄)Td < 0 and ∇gi(x̄)Td < 0, ∀i ∈ A(x?) simultaneously (see Remark 1.34). Let
A ∈ IR(|A(x?)|+1)×nx be the matrix whose rows are ∇f(x̄)

T and ∇gi(x̄)
T, i ∈ A(x?).

Clearly, the statement {∃d ∈ IRnx : Ad < 0} is false, and by Gordan’s Theorem 1.A.78,
there exists a nonzero vector p ≥ 0 in IR|A(x?)|+1 such that ATp = 0. Denoting the
components of p by u0 and ui for i ∈ A(x?), we get:

u0∇f(x?) +
∑

i∈A(x?)

ui∇gi(x
?) = 0

where u0 ≥ 0 and ui ≥ 0 for i ∈ A(x?), and (u0,uA(x?)) 6= (0,0) (here uA(x?) is the
vector whose components are the ui’s for i ∈ A(x?)). Letting ui = 0 for i /∈ A(x?), we
then get the conditions:

u0∇f(x?) + uT
∇g(x?) = 0
uTg(x?) = 0

u0,u ≥ 0
(u0,u) 6= (0,0),

where u is the vector whose components are ui for i = 1, . . . , ng . Note that u0 6= 0, for
otherwise the assumption of linear independence of the active constraints at x? would be
violated. Then, letting ν? = 1

u0
u, we obtain that (x?,ν?) is a KKT point.

Remark 1.40. One of the major difficulties in applying the foregoing result is that we do
not know a priori which constraints are active and which constraints are inactive, i.e., the
active set is unknown. Therefore, it is necessary to investigate all possible active sets for
finding candidate points satisfying the KKT conditions. This is illustrated in Example 1.41
below.

Example 1.41 (Regular Case). Consider the problem

min
x∈IR3

f(x) :=
1

2
(x2

1 + x2
2 + x2

3) (1.11)

s.t. g1(x) := x1 + x2 + x3 + 3 ≤ 0

g2(x) := x1 ≤ 0.

4Often, the condition (1.10) is replaced by the equivalent conditions:

ν̄igi(x̄) = 0 for i = 1, . . . , ng .
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Note that every feasible point is regular (the point (0,0,0) being infeasible), so x? must
satisfy the dual feasibility conditions:

x?1 + ν?1 + ν?2 = 0

x?2 + ν?1 = 0

x?3 + ν?1 = 0.

Four cases can be distinguished:

(i) The constraints g1 and g2 are both inactive, i.e., x?1 + x?2 + x?3 < −3, x?1 < 0, and
ν?1 = ν?2 = 0. From the latter together with the dual feasibility conditions, we get
x?1 = x?2 = x?3 = 0, hence contradicting the former.

(ii) The constraint g1 is inactive, while g2 is active, i.e., x?1 + x?2 + x?3 < −3, x?1 = 0,
ν?2 ≥ 0, and ν?1 = 0. From the latter together with the dual feasibility conditions, we
get x?2 = x?3 = 0, hence contradicting the former once again.

(iii) The constraint g1 is active, while g2 is inactive, i.e., x?1 +x?2 +x?3 = −3, x?1 < 0, and
ν?1 ≥ 0, and ν?2 = 0. Then, the point (x?,ν?) such that x1

? = x2
? = x3

? = −1,
ν?1 = 1 and ν?2 = 0 is a KKT point.

(iv) The constraints g1 and g2 are both active, i.e., x?1 + x?2 + x?3 = −3, x?1 = 0, and
ν?1 , ν

?
2 > 0. Then, we obtain x2

? = x3
? = − 3

2 , ν?1 = 3
2 , and ν?2 = − 3

2 , hence
contradicting the dual feasibility condition ν?2 ≥ 0.

Overall, there is a unique candidate for a local minimum. Yet, it cannot be concluded as to
whether this point is actually a global minimum, or even a local minimum, of (1.11). This
question will be addressed later on in Example 1.45.

Remark 1.42 (Constraint Qualification). It is very important to note that for a local
minimum x? to be a KKT point, an additional condition must be placed on the behavior of
the constraint, i.e., not every local minimum is a KKT point; such a condition is known
as a constraint qualification. In Theorem 1.39, it is shown that one possible constraint
qualification is that x? be a regular point, which is the well known linear independence
constraint qualification (LICQ). A weaker constraint qualification (i.e., implied by LICQ)
known as the Mangasarian-Fromovitz constraint qualification (MFCQ) requires that there
exits (at least) one direction d ∈ D0(x

?), i.e., such that ∇gi(x
?)

T
d < 0, for each i ∈

A(x?). Note, however, that the Lagrange multipliers are guaranteed to be unique if LICQ
holds (as stated in Theorem 1.39), while this uniqueness property may be lost under MFCQ.

The following example illustrates the necessity of having a constraint qualification for a
KKT point to be a local minimum point of an NLP.

Example 1.43 (Non-Regular Case). Consider the problem

min
x∈IR2

f(x) := −x1 (1.12)

s.t. g1(x) := x2 − (1− x1)
3 ≤ 0

g2(x) := −x2 ≤ 0.
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The feasible region is shown in Fig. 1.10. below. Note that a minimum point of (1.12) is
x? = (1, 0)

T. The dual feasibility condition relative to variable x1 reads:

−1 + 3ν1(1− x1)
2 = 0.

It is readily seen that this condition cannot be met at any point on the straight line C :=
{x : x1 = 1}, including the minimum point x?. In other words, the KKT conditions are
not necessary in this example. This is because no constraint qualification can hold at x?.
In particular, x? not being a regular point, LICQ does not hold; moreover, the set D0(x

?)

being empty (the direction d = (−1, 0)T gives ∇g1(x
?)Td = ∇g2(x

?)Td = 0, while any
other direction induces a violation of either one of the constraints), MFCQ does not hold at
x? either.
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Figure 1.10. Solution of Example 1.43.

The following theorem provides a sufficient condition under which any KKT point of an
inequality constrained NLP problem is guaranteed to be a global minimum of that problem.

Theorem 1.44 (KKT sufficient Conditions). Let f : IRnx → IR and gi : IRnx → IR,
i = 1, . . . , ng , be convex and differentiable functions. Consider the problem to minimize
f(x) subject to g(x) ≤ 0. If (x?,ν?) is a KKT point, then x? is a global minimum of that
problem.

Proof. Consider the functionL(x) := f(x)+
∑ng

i=1 ν
?
i gi(x). Sincef and gi, i = 1, . . . , ng,

are convex functions,and νi ≥ 0,L is also convex. Moreover, the dual feasibility conditions
impose that we have ∇L(x?) = 0. Hence, by Theorem 1.27, x? is a global minimizer for
L on IRnx , i.e.,

L(x) ≥ L(x?) ∀x ∈ IRnx .
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In particular, for each x such that gi(x) ≤ gi(x?) = 0, i ∈ A(x?), we have

f(x)− f(x?) ≥ −
∑

i∈A(x?)

µ?i [gi(x)− gi(x?)] ≥ 0.

Noting that {x ∈ IRnx : gi(x) ≤ 0, i ∈ A(x?)} contains the feasible domain {x ∈ IRnx :
gi(x) ≤ 0, i = 1, . . . , ng}, we therefore showed that x? is a global minimizer for the
problem.

Example 1.45. Consider the same Problem (1.11) as in Example 1.41 above. The point
(x?,ν?) with x1

? = x2
? = x3

? = −1, ν?1 = 1 and ν?2 = 0, being a KKT point, and both
the objective function and the feasible set being convex, by Theorem 1.44, x? is a global
minimum for the Problem (1.11).

Both second-order necessary and sufficient conditions for inequality constrained NLP
problems will be presented later on in � 1.7.

1.6 PROBLEMS WITH EQUALITY CONSTRAINTS

In this section, we shall consider nonlinear programming problems with equality constraints
of the form:

minimize f(x)

subject to hi(x) = 0 i = 1, . . . , nh.

Based on the material presented in � 1.5, it is tempting to convert this problem into an
inequality constrained problem, by replacing each equality constraints hi(x) = 0 by two
inequality constraintsh+

i (x) = hi(x) ≤ 0 andh−i (x) = −h(x) ≤ 0. Given a feasible point
x̄ ∈ IRnx , we would have h+

i (x̄) = h−i (x̄) = 0 and ∇h+
i (x̄) = −∇h−i (x̄). Therefore,

there could exist no vector d such that ∇h+
i (x̄) < 0 and ∇h−i (x̄) < 0 simultaneously, i.e.,

D0(x̄) = ∅. In other words, the geometric conditions developed in the previous section
for inequality constrained problems are satisfied by all feasible solutions and, hence, are
not informative (see Example 1.35 for an illustration). A different approach must therefore
be used to deal with equality constrained problems. After a number of preliminary results
in � 1.6.1, we shall describe the method of Lagrange multipliers for equality constrained
problems in � 1.6.2.

1.6.1 Preliminaries

An equality constraint h(x) = 0 defines a set on IRnx , which is best view as a hypersurface.
When considering nh ≥ 1 equality constraints h1(x), . . . , hnh(x), their intersection forms
a (possibly empty) set S := {x ∈ IRnx : hi(x) = 0, i = 1, . . . , nh}.

Throughout this section, we shall assume that the equality constraints are differentiable;
that is, the set S := {x ∈ IRnx : hi(x) = 0, i = 1, . . . , nh} is said to be differentiable
manifold (or smooth manifold). Associated with a point on a differentiable manifold is the
tangent set at that point. To formalize this notion, we start by defining curves on a manifold.
A curve ξ on a manifold S is a continuous application ξ : I ⊂ IR → S, i.e., a family of
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points ξ(t) ∈ S continuously parameterized by t in an interval I of IR. A curve is said to
pass through the point x̄ if x̄ = ξ(t̄) for some t̄ ∈ I; the derivative of a curve at t̄, provided
it exists, is defined as ξ̇(t̄) := limh→0

ξ(t̄+h)−ξ(t̄)
h

. A curve is said to be differentiable (or
smooth) if a derivative exists for each t ∈ I.

Definition 1.46 (Tangent Set). Let S be a (differentiable) manifold in IRnx , and let x̄ ∈ S.
Consider the collection of all the continuously differentiable curves on S passing through
x̄. Then, the collection of all the vectors tangent to these curves at x̄ is said to be the tangent
set to S at x̄, denoted by T (x̄).

If the constraints are regular, in the sense of Definition 1.47 below, then S is (locally)
of dimension nx − nh, and T (x̄) constitutes a subspace of dimension nx − nh, called the
tangent space.

Definition 1.47 (Regular Point (for a Set of Equality Constraints)). Let hi : IRnx → IR,
i = 1, . . . , nh, be differentiable functions on IRnx and consider the set S := {x ∈ IRnx :
hi(x) = 0, i = 1, . . . , nh}. A point x̄ ∈ S is said to be a regular point if the gradient
vectors ∇hi(x̄), i = 1, . . . , nh, are linearly independent, i.e.,

rank
(

∇h1(x̄) ∇h2(x̄) · · · ∇hnh(x̄)
)

= nh.

Lemma 1.48 (Algebraic Characterization of a Tangent Space). Let hi : IRnx → IR,
i = 1, . . . , nh, be differentiable functions on IRnx and consider the set S := {x ∈ IRnx :
hi(x) = 0, i = 1, . . . , nh}. At a regular point x̄ ∈ S, the tangent space is such that

T (x̄) = {d : ∇h(x̄)
T
d = 0}.

Proof. The proof is technical and is omitted here (see, e.g., [36, � 10.2]).

1.6.2 The Method of Lagrange Multipliers

The idea behind the method of Lagrange multipliers for solving equality constrained NLP
problems of the form

minimize f(x)

subject to hi(x) = 0 i = 1, . . . , nh.

is to restrict the search of a minimum on the manifold S := {x ∈ IRnx : hi(x) = 0, ∀i =
1, . . . , nh}. In other words, we derive optimality conditions by considering the value of the
objective function along curves on the manifold S passing through the optimal point.

The following Theorem shows that the tangent space T (x̄) at a regular (local) minimum
point x̄ is orthogonal to the gradient of the objective function at x̄. This important fact is
illustrated in Fig. 1.11. in the case of a single equality constraint.

Theorem 1.49 (Geometric Necessary Condition for a Local Minimum). Let f : IRnx →
IR and hi : IRnx → IR, i = 1, . . . , nh, be continuously differentiable functions on IRnx .
Suppose that x? is a local minimum point of the problem to minimize f(x) subject to the
constraints h(x) = 0. Then, ∇f(x?) is orthogonal to the tangent space T (x?),

F0(x
?) ∩T (x?) = ∅.

Proof. By contradiction, assume that there exists a d ∈ T (x?) such that ∇f(x?)
T
d 6= 0.

Let ξ : I = [−a, a]→ S, a > 0, be any smooth curve passing through x? with ξ(0) = x?
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Figure 1.11. Illustration of the necessary conditions of optimality with equality constraints.

and ξ̇(0) = d. Let also ϕ be the function defined as ϕ(t) := f(ξ(t)), ∀t ∈ I. Since x? is
a local minimum of f on S := {x ∈ IRnx : h(x) = 0}, by Definition 1.9, we have

∃η > 0 such that ϕ(t) = f(ξ(t)) ≥ f(x?) = ϕ(0) ∀t ∈ Bη (0) ∩ I.

It follows that t? = 0 is an unconstrained (local) minimum point for ϕ, and

0 = ∇ϕ(0) = ∇f(x?)
T
ξ̇(0) = ∇f(x?)

T
d.

We thus get a contradiction with the fact that ∇f(x?)Td 6= 0.

Next, we take advantage of the forgoing geometric characterization,and derive first-order
necessary conditions for equality constrained NLP problems.

Theorem 1.50 (First-Order Necessary Conditions). Let f : IRnx → IR and hi : IRnx →
IR, i = 1, . . . , nh, be continuously differentiable functions on IRnx . Consider the problem
to minimize f(x) subject to the constraints h(x) = 0. If x? is a local minimum and is a
regular point of the constraints, then there exists a unique vector λ? ∈ IRnh such that

∇f(x?) + ∇h(x?)
T
λ? = 0.

Proof. 5 Since x? is a local minimum of f on S := {x ∈ IRnx : h(x) = 0}, by Theo-
rem 1.49, we have F0(x

?) ∩ T (x?) = ∅, i.e., the system

∇f(x?)
T
d < 0 ∇h(x?)

T
d = 0,

is inconsistent. Consider the following two sets:

C1 := {(z1, z2) ∈ IRnh+1 : z1 = ∇f(x?)
T
d, z2 = ∇h(x?)

T
d}

C2 := {(z1, z2) ∈ IRnh+1 : z1 < 0, z2 = 0.}

5See also in Appendix of � 1 for an alternative proof of Theorem 1.50 that does not use the concept of tangent sets.
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Clearly, C1 and C2 are convex, and C1 ∩ C2 = ∅. Then, by the separation Theorem A.9,
there exists a nonzero vector (µ,λ) ∈ IRnh+1 such that

µ∇f(x?)
T
d + λT[∇h(x?)

T
d] ≥ µz1 + λTz2 ∀d ∈ IRnx , ∀(z1, z2) ∈ C2.

Letting z2 = 0 and since z1 can be made an arbitrarily large negative number, it follows that

µ ≥ 0. Also, letting (z1, z2) = (0,0), we must have [µ∇f(x?) + λT
∇h(x?)]

T
d ≥ 0,

for each d ∈ IRnx . In particular, letting d = −[µ∇f(x?) + λT
∇h(x?)], it follows that

−‖µ∇f(x?) + λT
∇h(x?)‖2 ≥ 0, and thus,

µ∇f(x?) + λT
∇h(x?) = 0 with (µ,λ) 6= (0,0). (1.13)

Finally, note that µ > 0, for otherwise (1.13) would contradict the assumption of linear
independence of ∇hi(x

?), i = 1, . . . , nh. The result follows by letting λ? := 1
µ
λ, and

noting that the linear independence assumption implies the uniqueness of these Lagrangian
multipliers.

Remark 1.51 (Obtaining Candidate Solution Points). The first-order necessary condi-
tions

∇f(x?) + ∇h(x?)
T
λ? = 0,

together with the constraints
h(x?) = 0,

give a total ofnx+nh (typically nonlinear) equations in the variables (x?,λ?). Hence, these
conditions are complete in the sense that they determine, at least locally, a unique solution.
However, as in the unconstrained case, a solution to the first-order necessary conditions
need not be a (local) minimum of the original problem; it could very well correspond to a
(local) maximum point, or some kind of saddle point. These consideration are illustrated
in Example 1.54 below.

Remark 1.52 (Regularity-Type Assumption). It is important to note that for a local
minimum to satisfy the foregoing first-order conditions and, in particular, for a unique
Lagrange multiplier vector to exist, it is necessary that the equality constraint satisfy a
regularity condition. In other word, the first-order conditions may not hold at a local
minimum point that is non-regular. An illustration of these considerations is provided in
Example 1.55.

There exists a number of similarities with the constraint qualification needed for a local
minimizer of an inequality constrained NLP problem to be KKT point; in particular, the
condition that the minimum point be a regular point for the constraints corresponds to LICQ
(see Remark 1.42).

Remark 1.53 (Lagrangian). It is convenient to introduce the Lagrangian L : IRnx ×
IRnh → IR associated with the constrained problem, by adjoining the cost and constraint
functions as:

L(x,λ) := f(x) + λTh(x).

Thus, if x? is a local minimum which is regular, the first-order necessary conditions are
written as

∇xL(x?,λ?) = 0 (1.14)
∇λL(x?,λ?) = 0, (1.15)
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the latter equations being simply a restatement of the constraints. Note that the solution of
the original problem typically corresponds to a saddle point of the Lagrangian function.

Example 1.54 (Regular Case). Consider the problem

min
x∈IR2

f(x) := x1 + x2 (1.16)

s.t. h(x) := x2
1 + x2

2 − 2 = 0.

Observe first that every feasible point is a regular point for the equality constraint (the
point (0,0) being infeasible). Therefore, every local minimum is a stationary point of the
Lagrangian function by Theorem 1.50.

The gradient vectors ∇f(x) and ∇h(x) are given by

∇f(x) =
(

1 1
)T and ∇h(x) =

(

2x1 2x2

)T
,

so that the first-order necessary conditions read

2λx1 = −1
2λx2 = −1

x2
1 + x2

2 = 2.

These three equations can be solved for the three unknowns x1, x2 and λ. Two candidate
local minimum points are obtained: (i) x1

? = x2
? = −1, λ? = 1

2 , and (ii) x1
? = x2

? = 1,
λ? = − 1

2 . These results are illustrated on Fig. 1.12.. It can be seen that only the former
actually corresponds to a local minimum point, while the latter gives a local maximum
point.
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Example 1.55 (Non-Regular Case). Consider the problem

min
x∈IR2

f(x) := −x1

s.t. h1(x) := (1− x1)
3 + x2 = 0

h2(x) := (1− x1)
3 − x2 = 0.

(1.17)

As shown by Fig. 1.13., this problem has only one feasible point, namely, x? = (1, 0)
T;

that is, x? is also the unique global minimum of (1.17). However, at this point, we have

∇f(x?) =

(

−1
0

)

, ∇h1(x
?) =

(

0
1

)

and ∇h2(x
?) =

(

0
−1

)

,

hence the first-order conditions

λ1

(

0
1

)

+ λ2

(

0
−1

)

=

(

1
0

)

cannot be satisfied. This illustrates the fact that a minimum point may not be a stationary
point for the Lagrangian if that point is non-regular.

The following theorem provides second-order necessary conditions for a point to be a
local minimum of a NLP problem with equality constraints.

Theorem 1.56 (Second-Order Necessary Conditions). Let f : IRnx → IR and hi :
IRnx → IR, i = 1, . . . , nh, be twice continuously differentiable functions on IRnx . Consider
the problem to minimize f(x) subject to the constraints h(x) = 0. If x? is a local minimum
and is a regular point of the constraints, then there exists a unique vector λ? ∈ IRnh such
that

∇f(x?) + ∇h(x?)
T
λ? = 0,

and
dT
(

∇
2f(x?) + ∇

2h(x?)
T
λ?
)

d ≥ 0 ∀d such that ∇h(x?)
T
d = 0.

Proof. Note first that ∇f(x?) + ∇h(x?)T
λ? = 0 directly follows from Theorem 1.50.

Let d be an arbitrary direction in T (x?); that is, ∇h(x?)
T
d = 0 since x? is a regular

point (see Lemma 1.48). Consider any twice-differentiable curve ξ : I = [−a, a] → S,
a > 0, passing through x? with ξ(0) = x? and ξ̇(0) = d. Let ϕ be the function defined as
ϕ(t) := f(ξ(t)), ∀t ∈ I. Since x? is a local minimum of f on S := {x ∈ IRnx : h(x) =
0}, t? = 0 is an unconstrained (local) minimum point for ϕ. By Theorem 1.25, it follows
that

0 ≤ ∇2ϕ(0) = ξ̇(0)
T
∇

2f(x?)ξ̇(0) + ∇f(x?)
T
ξ̈(0).

Furthermore, differentiating the relation h(ξ(t))T
λ = 0 twice, we obtain

ξ̇(0)
T
(

∇
2h(x?)

T
λ
)

ξ̇(0) +
(

∇h(x?)T
λ
)T
ξ̈(0) = 0.

Adding the last two equations yields

dT
(

∇
2f(x?) + ∇

2h(x?)
T
λ?
)

d ≥ 0,
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and this condition must hold for every d such that ∇h(x?)Td = 0.

Remark 1.57 (Eigenvalues in Tangent Space). In the foregoing theorem, it is shown
that the matrix ∇

2
xxL(x?,λ?) restricted to the subspace T (x?) plays a key role. Ge-

ometrically, the restriction of ∇
2
xxL(x?,λ?) to T (x?) corresponds to the projection

PT (x?)[∇
2
xxL(x?,λ?)].

A vector y ∈ T (x?) is said to be an eigenvector of PT (x?)[∇
2
xxL(x?,λ?)] if there is a

real number µ such that
PT (x?)[∇

2
xxL(x?,λ?)]y = µy;

the corresponding µ is said to be an eigenvalue of PT (x?)[∇
2
xxL(x?,λ?)]. (These defini-

tions coincide with the usual definitions of eigenvector and eigenvalue for real matrices.)
Now, to obtain a matrix representation for PT (x?)[∇

2
xxL(x?,λ?)], it is necessary to in-

troduce a basis of the subspace T (x?), say E = (e1, . . . , enx−nh). Then, the eigenvalues
of PT (x?)[∇

2
xxL(x?,λ?)] are the same as those of the (nx − nh) × (nx − nh) matrix

ET
∇

2
xxL(x?,λ?)E; in particular, they are independent of the particular choice of basis E.

Example 1.58 (Regular Case Continued). Consider the problem (1.16) addressed earlier
in Example 1.54. Two candidate local minimum points, (i) x1

? = x2
? = −1, λ? = 1

2 , and
(ii) x1

? = x2
? = 1, λ? = − 1

2 , were obtained on application of the first-order necessary
conditions. The Hessian matrix of the Lagrangian function is given by

∇
2
xxL(x, λ) = ∇

2f(x) + λ∇2h(x) = λ

(

2 0
0 2

)

,

and a basis of the tangent subspace at a point x ∈ T (x), x 6= (0, 0), is

E(x) :=

(

−x2

x1

)

.

Therefore,
ET

∇
2
xxL(x,λ)E = 2λ(x2

1 + x2
2).

In particular, for the candidate solution point (i), we have

ET
∇

2
xxL(x?,λ?)E = 2 > 0,

hence satisfying the second-order necessary conditions (in fact, this point also satisfies the
second-order sufficient conditions of optimality discussed hereafter). On the other hand,
for the candidate solution point (ii), we get

ET
∇

2
xxL(x?,λ?)E = −2 < 0

which does not satisfy the second-order requirement, so this point cannot be a local mini-
mum.

The conditions given in Theorems 1.50 and 1.56 are necessary conditions that must
hold at each local minimum point. Yet, a point satisfying these conditions may not be
a local minimum. The following theorem provides sufficient conditions for a stationary
point of the Lagrangian function to be a (local) minimum, provided that the Hessian matrix
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of the Lagrangian function is locally convex along directions in the tangent space of the
constraints.

Theorem 1.59 (Second-Order Sufficient Conditions). Let f : IRnx → IR and hi :
IRnx → IR, i = 1, . . . , nh, be twice continuously differentiable functions on IRnx . Consider
the problem to minimize f(x) subject to the constraints h(x) = 0. If x? and λ? satisfy

∇xL(x?,λ?) = 0
∇λL(x?,λ?) = 0,

and
yT

∇
2
xxL(x?,λ?)y > 0 ∀y 6= 0 such that ∇h(x?)

T
y = 0,

where L(x,λ) = f(x) + λTh(x), then x? is a strict local minimum.

Proof. Consider the augmented Lagrangian function

L̄(x,λ) = f(x) + λTh(x) +
c

2
‖h(x)‖2,

where c is a scalar. We have

∇xL̄(x,λ) = ∇xL(x, λ̄)

∇
2
xxL̄(x,λ) = ∇

2
xxL(x, λ̄) + c∇h(x)T

∇h(x),

where λ̄ = λ + ch(x). Since (x?,λ?) satisfy the sufficient conditions and by
Lemma 1.A.79, we obtain

∇xL̄(x?,λ?) = 0 and ∇
2
xxL̄(x?,λ?) � 0,

for sufficiently large c. L̄ being definite positive at (x?,λ?),

∃% > 0, δ > 0 such that L̄(x,λ?) ≥ L̄(x?,λ?) +
%

2
‖x− x?‖2 for ‖x− x?‖ < δ.

Finally, since L̄(x,λ?) = f(x) when h(x) = 0, we get

f(x) ≥ f(x?) +
%

2
‖x− x?‖2 if h(x) = 0, ‖x− x?‖ < δ,

i.e., x? is a strict local minimum.

Example 1.60. Consider the problem

min
x∈IR3

f(x) := −x1x2 − x1x3 − x2x3 (1.18)

s.t. h(x) := x1 + x2 + x3 − 3 = 0.

The first-order conditions for this problem are

−(x2 + x3) + λ = 0
−(x1 + x3) + λ = 0
−(x1 + x2) + λ = 0,
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together with the equality constraint. It is easily checked that the point x?1 = x?2 = x?3 = 1,
λ? = 2 satisfies these conditions. Moreover,

∇
2
xxL(x?,λ?) = ∇

2f(x?) =





0 −1 −1
−1 0 −1
−1 −1 0



 ,

and a basis of the tangent space to the constraint h(x) = 0 at x? is

E :=





0 2
1 −1
−1 −1



 .

We thus obtain

ET
∇

2
xxL(x?,λ?)E =

(

2 0
0 2

)

,

which is clearly a definite positive matrix. Hence, x? is a strict local minimum of (1.18).
(Interestingly enough, the Hessian matrix of the objective function itself is indefinite at x?

in this case.)

We close this section by providing insight into the Lagrange multipliers.

Remark 1.61 (Interpretation of the Lagrange Multipliers). The concept of Lagrange
multipliers allows to adjoin the constraints to the objective function. That is, one can view
constrained optimization as a search for a vector x? at which the gradient of the objective
function is a linear combination of the gradients of constraints.

Another insightful interpretation of the Lagrange multipliers is as follows. Consider the
set of perturbed problems v?(y) := min{f(x) : h(x) = y}. Suppose that there is a unique
regular solution point for each y, and let {ξ?(y)} := argmin{f(x) : h(x) = y} denote
the evolution of the optimal solution point as a function of the perturbation parameter y.
Clearly,

v(0) = f(x?) and ξ(0) = x?.

Moreover, since h(ξ(y)) = y for each y, we have

∇yh(ξ(y)) = 1 = ∇xh(ξ(y))
T
∇yξ(y).

Denoting byλ? the Lagrange multiplier associated to the constrainth(x) = 0 in the original
problem, we have

∇yv(0) = ∇xf(x?)
T
∇yξ(0) = −λ?∇xh(x

?)
T
∇yξ(0) = −λ?.

Therefore, the Lagrange multipliers λ? can be interpreted as the sensitivity of the objective
function f with respect to the constraint h. Said differently, λ? indicates how much the
optimal cost would change, if the constraints were perturbed.

This interpretation extends straightforwardly to NLP problems having inequality con-
straints. The Lagrange multipliers of an active constraints g(x) ≤ 0, say ν? > 0, can
be interpreted as the sensitivity of f(x?) with respect to a change in that constraints, as
g(x) ≤ y; in this case, the positivity of the Lagrange multipliers follows from the fact
that by increasing y, the feasible region is relaxed, hence the optimal cost cannot increase.
Regarding inactive constraints, the sensitivity interpretation also explains why the Lagrange
multipliers are zero, as any infinitesimal change in the value of these constraints leaves the
optimal cost value unchanged.
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1.7 GENERAL NLP PROBLEMS

In this section, we shall consider general, nonlinear programming problems with both
equality and inequality constraints,

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . , ng

hi(x) = 0, i = 1, . . . , nh.

Before stating necessary and sufficient conditions for such problems, we shall start by
revisiting the KKT conditions for inequality constrained problems, based on the method of
Lagrange multipliers described in � 1.6.

1.7.1 KKT Conditions for Inequality Constrained NLP Problems Revisited

Consider the problem to minimize a function f(x) for x ∈ S := {x ∈ IRnx : gi(x) ≤
0, i = 1, . . . , ng}, and suppose that x? is a local minimum point. Clearly, x? is also a local
minimum of the inequality constrained problem where the inactive constraints gi(x) ≤ 0,
i /∈ A(x?), have been discarded. Thus, in effect, inactive constraints at x? don’t matter;
they can be ignored in the statement of optimality conditions.

On the other hand, active inequality constraints can be treated to a large extend as
equality constraints at a local minimum point. In particular, it should be clear that x? is
also a local minimum to the equality constrained problem

minimize f(x)

subject to gi(x) = 0, i ∈ A(x?).

That is, it follows from Theorem 1.50 that, if x? is a regular point, there exists a unique
Lagrange multiplier vector ν? ∈ IRng such that

∇f(x?) +
∑

i∈A(x?)

ν?i ∇gi(x
?) = 0.

Assigning zero Lagrange multipliers to the inactive constraints, we obtain

∇f(x?) + ∇g(x?)
T
ν? = 0 (1.19)
ν?i = 0, ∀i /∈ A(x?). (1.20)

This latter condition can be rewritten by means of the following inequalities

ν?i gi(x
?) = 0 ∀i = 1, . . . , ng.

The argument showing that ν ≥ 0 is a little more elaborate. By contradiction, assume
that ν` < 0 for some ` ∈ A(x?). Let A ∈ IR(ng+1)×nx be the matrix whose rows are
∇f(x?) and ∇gi(x

?), i = 1, . . . , ng. Since x? is a regular point, the Lagrange multiplier
vector ν? is unique. Therefore, the condition

ATy = 0,

can only be satisfied by y? := η( 1 ν? )
T with η ∈ IR. Because ν` < 0, we know by

Gordan’s Theorem 1.A.78 that there exists a direction d̄ ∈ IRnx such that Ad̄ < 0. In other
words,

d̄ ∈ F0(x
?) ∩D0(x

?) 6= ∅,



32 NONLINEAR PROGRAMMING

which contradicts the hypothesis that x? is a local minimizer of f on S (see Remark 1.34).
Overall, these results thus constitute the KKT optimality conditions as stated in The-

orem 1.39. But although the foregoing development is straightforward, it is somewhat
limited by the regularity-type assumption at the optimal solution. Obtaining more general
constraint qualifications (see Remark 1.42) requires that the KKT conditions be derived
using an alternative approach, e.g., the approach described earlier in � 1.5. Still, the con-
version to equality constrained problem proves useful in many situations, e.g., for deriving
second-order sufficiency conditions for inequality constrained NLP problems.

1.7.2 Optimality Conditions for General NLP Problems

We are now ready to generalize the necessary and sufficient conditions given in Theo-
rems 1.39, 1.50, 1.56 and 1.59 to general NLP problems.

Theorem 1.62 (First- and Second-Order Necessary Conditions). Let f : IRnx → IR,
gi : IRnx → IR, i = 1, . . . , ng , and hi : IRnx → IR, i = 1, . . . , nh, be twice continuously
differentiable functions on IRnx . Consider the problem P to minimize f(x) subject to the
constraints g(x) = 0 and h(x) = 0. If x? is a local minimum of P and is a regular point
of the constraints, then there exist unique vectors ν? ∈ IRng and λ? ∈ IRnh such that

∇f(x?) + ∇g(x?)T
ν? + ∇h(x?)T

λ? = 0 (1.21)
ν? ≥ 0 (1.22)

g(x?) ≤ 0 (1.23)
h(x?) = 0 (1.24)

ν?
Tg(x?) = 0, (1.25)

and
yT
(

∇
2f(x?) + ∇

2g(x?)
T
ν? + ∇

2h(x?)
T
λ?
)

y ≥ 0,

for all y such that ∇gi(x
?)

T
y = 0, i ∈ A(x?), and ∇h(x?)

T
y = 0.

Theorem 1.63 (Second-Order Sufficient Conditions). Let f : IRnx → IR, gi : IRnx →
IR, i = 1, . . . , ng , and hi : IRnx → IR, i = 1, . . . , nh, be twice continuously differentiable
functions on IRnx . Consider the problem P to minimize f(x) subject to the constraints
g(x) = 0 and h(x) = 0. If there exists x?, ν? and λ? satisfying the KKT conditions
(1.21–1.25), and

yT
∇

2
xxL(x?,ν?,λ?)y > 0

for all y 6= 0 such that

∇gi(x
?)

T
y = 0 i ∈ A(x?) with ν?i > 0

∇gi(x
?)Ty ≤ 0 i ∈ A(x?) with ν?i = 0

∇h(x?)
T
y = 0,

where L(x,λ) = f(x) + νTg(x) + λTh(x), then x? is a strict local minimum of P.

Likewise, the KKT sufficient conditions given in Theorem 1.44 for convex, inequality
constrained problems can be generalized to general convex problems as follows:
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Theorem 1.64 (KKT sufficient Conditions). Let f : IRnx → IR and gi : IRnx →
IR, i = 1, . . . , ng , be convex and differentiable functions. Let also hi : IRnx → IR,
i = 1, . . . , nh, be affine functions. Consider the problem to minimize f(x) subject to
x ∈ S := {x ∈ IRnx : g(x) ≤ 0,h(x) = 0}. If (x?,ν?,λ?) satisfies the KKT conditions
(1.21–1.25), then x? is a global minimizer for f on S.

1.8 NUMERICAL METHODS FOR NONLINEAR PROGRAMMING PROBLEMS

Nowadays, strong and efficient mathematical programming techniques are available for
solving a great variety of nonlinear problems, which are based on solid theoretical results
and extensive numerical studies. Approximated functions,derivatives and optimal solutions
can be employed together with optimization algorithms to reduce the computational time.

The aim of this section is not to describe state-of-the-art algorithms in nonlinear program-
ming, but to explain, in a simple way, a number of modern algorithms for solving nonlinear
problems. These techniques are typically iterative in the sense that, given an initial point
x0, a sequence of points, {xk}, is obtained by repeated application of an algorithmic rule.
The objective is to make this sequence converge to a point x̄ in a pre-specified solution
set. Typically, the solution set is specified in terms of optimality conditions, such as those
presented in � 1.4 through � 1.7.

We start by recalling a number of concepts in � 1.8.1. Then, we discuss the principles
of Newton-like algorithms for nonlinear systems in � 1.8.2, and use these concepts for the
solution of unconstrained optimization problems in � 1.8.3. Finally, algorithms for solving
general, nonlinear problems are presented in � 1.8.4, with emphasizes on sequential uncon-
strained minimization (SUM) and sequential quadratic programming (SQP) techniques.

1.8.1 Preliminaries

Two essential questions must be addressed concerning iterative algorithms. The first ques-
tion, which is qualitative in nature, is whether a given algorithm in some sense yields, at
least in the limit, a solution to the original problem; the second question, the more quanti-
tative one, is concerned with how fast the algorithm converges to a solution. We elaborate
on these concepts in this subsection.

The convergence of an algorithm is said to asymptotic when the solution is not achieved
after a finite number of iterations; except for particular problems such as linear and quadratic
programming, this is generally the case in nonlinear programming. That is, a very desirable
property of an optimization algorithm is global convergence:

Definition 1.65 (Global Convergence, Local Convergence). An algorithm is said to be
globally convergent if, for any initial point x0, it generates a sequence of points that con-
verges to a point x̄ in the solution set. It is said to be locally convergent if there exists a
% > 0 such that for any initial point x0 such that ‖x̄− x0‖ < %, it generates a sequence of
points converging to x̄ in the solution set.

Most modern mathematical programming algorithms are globally convergent. Locally
convergent algorithms are not useful in practice because the neighborhood of convergence
is not known in advance and can be arbitrarily small.

Next, what distinguishes optimization algorithms with the global convergence property
is the order of convergence:
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Definition 1.66 (Order of Convergence). The order of convergenceof a sequence {xk} →
x̄ is the largest nonnegative integer p such that

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖p = β < ∞,

When p = 1 and the convergence ratio β < 1, the convergence is said to be linear; if
β = 0, the convergence is said to be superlinear. When p = 2, the convergence is said to
be quadratic.

Since they involve the limit when k →∞, p and β are a measure of the asymptotic rate
of convergence, i.e., as the iterates gets close to the solution; yet, a sequence with a good
order of convergence may be very “slow” far from the solution. Clearly, the convergence
is faster when p is larger and β is smaller. Near the solution, if the convergence rate is
linear, then the error is multiplied by β at each iteration. The error reduction is squared for
quadratic convergence, i.e., each iteration roughly doubles the number of significant digits.
The methods that will be studied hereafter have convergence rates varying between linear
and quadratic.

Example 1.67. Consider the problem to minimize f(x) = x2, subject to x ≥ 1.
Let the (point-to-point) algorithmic map M1 be defined defined as M1(x) = 1

2 (x+1). It
is easily verified that the sequence obtained by applying the map M1, with any starting point,
converges to the optimal solution x? = 1, i.e., M1 is globally convergent. For examples,
with x0 = 4, the algorithm generates the sequence {4, 2.5, 1.75, 1.375, 1.1875, . . .}. We
have (xk+1 − 1) = 1

2 (xk − 1), so that the limit in Definition 1.66 is β = 1
2 with p = 1;

moreover, for p > 1, this limit is infinity. Consequently, xk → 1 linearly with convergence
ratio 1

2 .
On the other hand, consider the (point-to-point) algorithmic map M2 be defined defined

as M2(x; k) = 1+ 1
2k+1 (x−1). Again, the sequence obtained by applyingM2 converges to

x? = 1, from any starting point. However, we now have |xk+1−1|
|xk−1| = 1

2k
, which approaches

0 as k → ∞. Hence, xk → 1 superlinearly in this case. With x0 = 4, the algorithm
generates the sequence {4, 2.5, 1.375, 1.046875, . . .}.

The algorithmic maps M1 and M2 are illustrated on the left and right plots in Fig 1.14.,
respectively.

It should also be noted that for most algorithms, the user must set initial values for
certain parameters, such as the starting point and the initial step size, as well as parameters
for terminating the algorithm. Optimization procedures are often quite sensitive to these
parameters, and may produce different results, or even stop prematurely, depending on their
values. Therefore, it is crucial for the user to understand the principles of the algorithms
used, so that he or she can select adequate values for the parameters and diagnose the reasons
of a premature termination (failure).

1.8.2 Newton-like Algorithms for nonlinear Systems

The fundamental approach to most iterative schemes was suggested over 300 years ago
by Newton. In fact, Newton’s method is the basis for nearly all the algorithms that are
described herein.
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Figure 1.14. Illustration of algorithmic maps M1 and M2 in Example 1.67, with x0 = 4.

Suppose one wants to find the value of the variable x ∈ IRnx such that

φ(x) = 0,

whereφ : IRnx → IRnx is continuously differentiable. Let us assume that one such solution
exists, and denote it byx?. Let alsox be a guess for the solution. The basic idea of Newton’s
method is to approximate the nonlinear functionφ by the first two terms in its Taylor series
expansion about the current point x. This yields a linear approximation for the vector
function φ at the new point x̄,

φ(x̄) = φ(x) + ∇φ(x) [x̄− x] . (1.26)

Using this linear approximation, and provided that the Jacobian matrix ∇φ(x) is non-
singular, a new estimate for the solution x? can be computed by solving (1.26) such that
φ(x̄) = 0, i.e.,

x̄ = x− [∇φ(x)]−1
φ(x).

Letting d := − [∇φ(x)]
−1
φ(x), we get the update x̄ = x + d.

Of course, φ being a nonlinear function, one cannot expect that φ(x̄) = 0, but there is
much hope that x̄ be a better estimate for the root x? than the original guess x. In other
words, we might expect that

|x̄− x?| ≤ |x− x?| and |φ(x̄)| ≤ |φ(x)|.

If the new point is an improvement, then it makes sense to repeat the process, thereby
defining a sequence of points x0,x1, . . .. An algorithm implementing Newton’s method is
as follows:

Initialization Step
Let ε > 0 be a termination scalar, and choose an initial point x0. Let k = 0 and go
to the main step.

Main Step

1. Solve the linear system ∇φ(xk)dk = −φ(xk) for dk.

2. Compute the new estimate xk+1 = xk + dk.

3. If ‖φ(xk+1)‖ < ε, stop; otherwise, replace k ← k + 1, and go to step 1.
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It can be shown that the rate of convergence for Newton’s method is quadratic (see
Definition 1.66). Loosely speaking, it implies that each successive estimate of the solution
doubles the number significant digits, which is a very desirable property for an algorithm
to possess.

Theorem 1.68. Letφ : IRnx → IRnx be continuously differentiable,and consider Newton’s
algorithm defined by the map M(x) := x−∇φ(x)

−1
φ(x). Let x? be such thatφ(x?) = 0,

and suppose that ∇φ(x?) is nonsingular. Let the starting point x0 be sufficiently close to
x?, so that there exist c1, c2 > 0 with c1c2‖x0 − x?‖ < 1, and

‖∇φ(x)−1‖ ≤ c1 (1.27)

‖φ(x?)− φ(x)−∇φ(x) [x? − x] ‖ ≤ c2‖x? − x‖2,

for each x satisfying ‖x? − x‖ ≤ ‖x? − x0‖. Then, Newton’s algorithm converges with a
quadratic rate of convergence.

Proof. See [6, Theorem 8.6.5] for a proof.

But can anything go wrong with Newton’s method?

Lack of Global Convergence First and foremost, if the initial guess is not sufficiently
close to the solution, i.e., within the region of convergence, Newton’s method may
diverge. Said differently, Newton’s method as presented above does not have the
global convergence property (see Definition 1.65 and Example 1.69 hereafter). This
is because dk := ∇φ(xk)

−1
φ(xk) may not be a valid descent direction far from

the solution, and even if ∇φ(xk)dk < 0, a unit step size might not give a descent
in φ. Globalization strategies, which aim at correcting this latter deficiency, will be
presented in � 1.8.3.1 in the context of unconstrained optimization.

Singular Jacobian Matrix A second difficulty occurs when the Jacobian matrix ∇φ(xk)
becomes singular during the iteration process, since the correction defined by (1.8.2)is
not defined in this case. Note that the assumption (1.27) in Theorem 1.68 guarantees
that ∇φ(xk) cannot be singular. But when the Jacobian matrix is singular at the
solution point x?, then Newton’s method looses its quadratic convergence property.

Computational Efficiency Finally, at each iteration, Newton’s method requires (i) that
the Jacobian matrix ∇φ(xk) be computed, which may be difficult and/or costly
especially when the expression of φ(x) is complicated, and (ii) that a linear system
be solved. The analytic Jacobian can be replaced by a finite-difference approximation,
yet this is costly asnx additional evaluations ofφ are required at each iterations. With
the objective of reducing the computational effort, quasi-Newton methods generate
an approximation of the Jacobian matrix, based on the information gathered from the
iteration progress. To avoid solving a linear system for the search direction, variants
of quasi-Newton methods also exist that generate an approximation of the inverse of
the Jacobian matrix. Such methods will be described in � 1.8.3.2 in the context of
unconstrained optimization.

Example 1.69. Consider the problem to find a solution to the nonlinear equation

f(x) = arctan(x) = 0.
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The Newton iteration sequence obtained by starting from x0 = 1 is as follows:

k xk |f(xk)|

0 1 0.785398
1 −0.570796 0.518669
2 0.116860 0.116332
3 −1.061022 × 10−3 1.061022 × 10−3

4 7.963096 × 10−10 7.963096 × 10−10

Notice the very fast convergence to the solution x? = 0, as could be expected from
Theorem 1.68. The first three iterations are represented in Fig. 1.15., on the left plot.

However, convergence is not guaranteed for any initial guess. More precisely, it can be
shown that Newton’s method actually diverges when the initial guess is chosen such that
|x0| > α, with α ≈ 1.3917452002707 being a solution of arctan(z) = 2z

1+z2 ; further, the
method cycles indefinitely for |x0| = α. Both these situations are illustrated in the right
plot and the bottom plot of Fig. 1.15., respectively.
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Figure 1.15. Illustration of Newton’s algorithm in Example 1.69. Left plot: convergent iterates;
right plot: divergent iterates; bottom plot: iterates cycle indefinitely.

1.8.3 Unconstrained Optimization

We now turn to a description of basic techniques used for iteratively solving unconstrained
problems of the form:

minimize: f(x); x ∈ IRnx .
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Many unconstrained optimization algorithms work along the same lines. Starting from an
initial point, a direction of movement is determined according to a fixed rule,and then a move
is made in that direction so that the objective function value is reduced; at the new point, a
new direction is determined and the process is repeated. The main difference between these
algorithms rest with the rule by which successive directions of movement are selected. A
distinction is usually made between those algorithms which determine the search direction
without using gradient information (gradient-free methods), and those using gradient (and
higher-order derivatives) information (gradient-based methods). Here, we shall focus our
attention on the latter class of methods, and more specifically on Newton-like algorithms.

Throughout this subsection, we shall assume that the objective functionf is twice contin-
uously differentiable. By Theorem 1.22, a necessary condition forx? to be a local minimum
of f is ∇f(x?) = 0. Hence, the idea is to devise an iterative scheme that finds a point
satisfying the foregoing condition. Following the techniques discussed earlier in � 1.8.2,
this can be done by using a Newton-like algorithm, with φ corresponding to the gradient
∇f of f , and ∇φ to its Hessian matrix H.

At each iteration, a new iterate xk+1 is obtained such that the linear approximation to
the gradient at that point is zero,

∇f(xk+1) = ∇f(xk) + H(xk)
[

xk+1 − xk
]

= 0.

The linear approximation yields the Newton search direction

dk := xk+1 − xk = −[H(xk)]−1
∇f(xk). (1.28)

As discussed in � 1.8.2, if it converges, Newton’s method exhibits a quadratic rate of
convergence when the Hessian matrix H is nonsingular at the solution point. However,
since the Newton iteration is based on finding a zero of the gradient vector, there is no
guarantee that the step will move towards a local minimum, rather than a saddle point or
even a maximum. To preclude this, the Newton steps should be taken downhill, i.e., the
following descent condition should be satisfied at each iteration,

∇f(xk)
T
dk < 0.

Interestingly enough, with the Newton direction (1.28), the descent condition becomes

∇f(xk)
T
H(xk)

−1
∇f(xk) > 0.

That is, a sufficient condition to obtain a descent direction at xk is that the Hessian matrix
H(xk) be positive definite. Moreover, if H(x?) is positive definite at a local minimizer
x? of f , then the Newton iteration converges to x? when started sufficiently close to x?.
(Recall that, by Theorem 1.28, positive definiteness of H(x?) is a sufficient condition for a
local minimum of f to be a strict local minimum.)

We now discuss two important improvements to Newton’s method, which are directly
related to the issues discussed in � 1.8.2, namely (i) the lack of global convergence, and (ii)
computational efficiency.

1.8.3.1 Globalization Strategies Up to this point, the development has focused on
the application of Newton’s method. However, even in the simplest one-dimensional ap-
plications, Newton’s method has deficiencies (see, e.g., Example 1.69). Methods for cor-
recting global convergence deficiencies are referred to as globalization strategies. It should
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be stressed than an efficient globalization strategy should only alter the iterates when a
problem is encountered, but it should not impede the ultimate behavior of the method, i.e.,
the quadratic convergence of a Newton’s method should be retained.

In unconstrained optimization, one can detect problems in a very simple fashion, by
monitoring whether the next iterate xk+1 satisfies a descent condition with respect to the
actual iterate xk, e.g., f(xk+1) < f(xk). Then, either one of two globalization strategies
can be used to correct the Newton step. The first strategy, known as line search method,
is to alter the magnitude of the step; the second one, known as trust region method, is to
modify both the step magnitude and direction. We shall only concentrate on the former
class of globalization strategies subsequently.

A line search method proceeds by replacing the full Newton step xk+1 = xk + dk with

xk+1 = xk + αdk,

where the step-length α ≥ 0 is chosen such that the objective function is reduced,

f(xk + αdk) < f(xk).

Clearly, the resulting minimization problem can be solved by any one-dimensional exact
minimization technique (e.g.,Newton’s method itself). However, such techniques are costly
in the sense that they often require many iterations to converge and, therefore, many function
(or even gradient) evaluations.

In response to this, most modern algorithms implement so-called inexact line search
criteria, which aim to find a step-length α giving an “acceptable” decrease in the objective
function. Note that sacrificing accuracy, we might impair the convergence of the overall
algorithm that iteratively employs such a line search. However, by adopting a line search
that guarantees a sufficient degree of descent in the objective function, the convergence of
the overall algorithm can still be established.

We now describe one popular definition of an acceptable step-length know as Armijo’s
rule; other popular approaches are the quadratic and cubic fit techniques, as well as Wolfe’s
and Glodstein’s tests. Armijo’s rule is driven by two parameters 0 < κ1 < 1 and κ2 > 1,
which respectively manage the acceptable step-length from being too large or too small.
(Typical vales are κ1 = 0.2 and κ2 = 2.) Define the line search function `(α) := f(xk +

αdk), for α ≥ 0, and consider the modified first-order approximation ˆ̀(α) := `(0) +
κ1α`

′(0). A step-length ᾱ ∈ (0, 1) is deemed acceptable if the following conditions hold:

`(ᾱ) ≤ ˆ̀(ᾱ) (1.29)

`(κ2ᾱ) ≥ ˆ̀(κ2ᾱ). (1.30)

The condition (1.29) prevents the step-length ᾱ from being too large, whereas the condition
(1.30) prevents ᾱ from being too small. The acceptable region defined by the Armijo’s rule
is shown in Fig. 1.16. below.

1.8.3.2 Recursive Updates Another limitation of Newton’s method when applied to
unconstrained optimization problems is that the Hessian matrix of the objective function
is needed at each iteration, then a linear system must be solved for obtaining the search
direction. For many applications, this can be a costly computational burden. In response
to this, quasi-Newton methods attempt to construct this information recursively. However,
by so doing, the quadratic rate of convergence is lost.
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The basic idea for many quasi-Newton methods is that two successive iterates xk, xk+1,
together with the corresponding gradients ∇f(xk), ∇f(xk+1), yield curvature information
by means of the first-order approximation relation

∇f(xk+1) = ∇f(xk) + H(xk)δk + h.o.t.,

with δk := xk+1 − xk. In particular, given nx linearly independent iteration increments
δ0, . . . , δnx−1, an approximation of the Hessian matrix can be obtained as

H(xnx) ≈
[

γ0 · · · γnx−1
] [

δ0 · · · δnx−1
]−1

,

or for the inverse Hessian matrix as

H(xnx)
−1 ≈

[

δ0 · · · δnx−1
] [

γ0 · · · γnx−1
]−1

,

where γk := ∇f(xk+1)−∇f(xk).
Note that when the objective function is quadratic, the previous relations are exact.

Many interesting quasi-Newton methods use similar ways, although more sophisticated,
to construct an approximate Hessian matrix Bk that progressively approaches the inverse
Hessian. One of the most popular class of quasi-Newton methods (known as the Broyden
family) proceeds as follows:

Bk+1 := Bk +
δkδk

T

δk
T
γk
− BkγkγkTBk

γk
TBkγk

+ ξγk
T
Bkγk

(

δk

δk
T
γk
− Bkγk

γk
TBkγk

)(

δk

δk
T
γk
− Bkγk

γk
TBkγk

)T

, (1.31)

where 0 ≤ ξ ≤ 1. It is easily seen that when supplemented with a line search strategy,
dk

T
γk < 0 at each k, and hence the Hessian matrix approximations are guaranteed to

exist. Moreover, it can be shown that the successive approximates remain are positive-
definite provided that B0 is itself positive-definite.

By setting ξ = 0, (1.31) yields the Davidon-Fletcher-Powell (DFP) method, which is
historically the first quasi-Newton method, while setting ξ = 1 gives the Broyden-Fletcher-
Goldfard-Shanno (BFGS) method, for which there is substantial evidence that it is the best
general purpose quasi-Newton method currently known.
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1.8.3.3 Summary A Newton-like algorithm including both a line search method
(Armijo’s rule) and Hessian recursive update (DFP update) is as follows:

Initialization Step
Let ε > 0 be a termination scalar, and choose an initial point x0 ∈ IRnx and a
symmetric, definite positive matrix B0 ∈ IRnx×nx . Let k = 0, and go to the main
step.

Main Step

1. Search Direction – Obtain the search direction from dk = −Bk∇f(xk).

2. Line Search – Find a step αk satisfying Armijo’s conditions (1.29,1.30).

3. Update – Compute the new estimates

xk+1 := xk + αkdk

Bk+1 := Bk +
δkδk

T

δk
T
γk
− BkγkγkTBk

γk
TBkγk

,

with δk := xk+1 − xk and γk := ∇f(xk+1)−∇f(xk).

4. If ‖∇f(xk+1)‖ < ε, stop; otherwise, replace k ← k + 1, and go to step 1.

The standard unconstrained optimization algorithm in the version 3.0.2 of the Optimiza-
tion Toolbox in MATLAB � is an implementation of quasi-Newton’s method, with DFP or
BFGS update, and a line search strategy. (See MATLAB � help pages for more information
about the algorithm and the function fminunc.)

Example 1.70. Consider the problem to find a minimum to Rosenbrock’s function

f(x) = (1− x1)
2 + c

(

x2 − x2
1

)2
,

for x ∈ IR2, with c := 105. We solved this problem using the function fminunc of the
Optimization Toolbox in MATLAB � . The M-files are as follows:

1 clear all;

2 x0 = [ 5; 5 ];

3 options = optimset(’GradObj’, ’on’, ’Display’, ’iter’, ...

4 ’DerivativeCheck’, ’on’, ’LargeScale’, ’off’, ...

5 ’HessUpdate’, ’bfgs’, ’Diagnostics’, ’on’, ...

6 ’LineSearchType’, ’cubicpoly’, ’tolX’, 1e-10, ...

7 ’tolFun’, 1e-10)

8 c = 105;

9 [xopt, fopt, iout] = fminunc( @(x) exm1(x,c), x0, options );

1 %%%%%%%%%%%%%%% FUNCTION TO BE MINIMIZED %%%%%%%%%%%%%%%

2 % ROSENBROCK FUNCTION: f(x,y) := (1-x)^2+c*(y-x^2)^2
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3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 function [f,g] = exm1(x,c)

5 f = (1-x(1))^2 + c*(x(2)-x(1)^2)^2; % function

6 if nargout > 1

7 g = [ -2*(1-x(1)) + 2*c*(x(2)-x(1)^2)*(-2*x(1)) % gradient

8 2*c*(x(2)-x(1)^2) ];

9 end

10 end

The results are shown in Fig. 1.17. Observe the slow convergence of the iterates far from
the optimal solution x? = (1, 1), but the very fast convergence in the vicinity of x?.
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Figure 1.17. Illustration of quasi-Newton’s algorithm for Rosenbrock’s function in Example 1.70.

1.8.4 Constrained Nonlinear Optimization

In this subsection, we turn our attention to algorithms for iteratively solving constrained
problems of the form:

minimize: f(x); x ∈ X ⊂ IRnx .
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Many modern deterministic algorithms for constrained NLP problems are based on the
(rather natural) principle that, instead of solving a difficult problem directly, one had better
solve a sequence of simpler, but related, subproblems, which converges to a solution of the
original problem either in a finite number of steps or in the limit. Working along these lines,
two classes of algorithms can be distinguished for solution of NLP problems with equality
and/or inequality constraints. On the one hand, penalty function and interior-point methods
consist of solving the problem as a sequence of unconstrained problems (or problems with
simple constraints), so that algorithms for unconstrained optimization can be used. These
methods, which do not rely on the KKT theory described earlier in � 1.5 through � 1.7, shall
be briefly presented in � 1.8.4.1 and � 1.8.4.2. On the other hand, Newton-like methods
solve NLP problems by attempting to find a point satisfying the necessary conditions of
optimality (KKT conditions in general). Successive quadratic programming (SQP), which
shall be presented in � 1.8.4.3, represents one such class of methods.

1.8.4.1 Penalty Function Methods Methods using penalty functions transform a
constrained problem into a single unconstrained problem or a sequence of unconstrained
problems. This is done by placing the constraints into the objective function via a penalty
parameter in a way that penalizes any violation of the constraints. To illustrate it, consider
the NLP problem

min
x

f(x)

s.t. g(x) ≤ 0
h(x) = 0
x ∈ X

(1.32)

whereX is a subset of IRnx , x is a vector of nx components x1, . . . , xnx , and f : X → IR,
g : X → IRng and h : X → IRnh are defined on X .

In general, a suitable penalty function α(x) for problem (1.32) is defined by

α(x) =

ng
∑

k=1

φ[gk(x)] +

nh
∑

k=1

ψ[hk(x)], (1.33)

where φ and ψ are continuous functions satisfying the conditions
{

φ(z) = 0 if z ≤ 0
φ(z) > 0 otherwise and

{

ψ(z) = 0 if z = 0
ψ(z) > 0 otherwise (1.34)

Typically, φ and ψ are of the forms

φ(z) = (max{0, z})p and ψ(z) = |z|p,

with p a positive integer (taking p ≥ 2 provides continuously differentiable penalty func-
tions). The function f(x) + µα(x) is referred to as the auxiliary function.

Example 1.71. Consider the problem to minimize f(x) = x, subject to g(x) = −x+2 ≤ 0.
It is immediately evident that the optimal solution lies at the point x? = 2, and has objective
value f(x?) = 2.

Now, consider the penalty problem to minimize f(x)+µα(x) = x+µmax{0, 2−x}2
in IR, where µ is a large number. Note first that for any µ, the auxiliary function is convex.
Thus, a necessary and sufficient condition for optimality is that the gradient of f(x)+µα(x)
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be equal to zero, yielding xµ = 2 − 1
2µ . Thus, the solution of the penalty problem can

be made arbitrarily close to the solution of the original problem by choosing µ sufficiently
large. Moreover, f(xµ) + µα(xµ) = 2 − 1

4µ , which can also be made arbitrarily close
to f(x?) by taking µ sufficiently large. These considerations are illustrated in Fig. 1.18.
below.
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Figure 1.18. Illustration of the penalty (left plot) and auxiliary (right plot) functions in
Example 1.71.

The conclusions of Example 1.71 that the solution of the penalty problem can be made
arbitrarily close to the solution of the original problem, and the optimal auxiliary function
value arbitrarily close to the optimal objective value, by choosing µ sufficiently large, is
formalized in the following:

Theorem 1.72. Consider the NLP problem (1.32), where f , g and h are continuous func-
tions on IRnx and X is a nonempty convex set in IRnx . Suppose that (1.32) has a feasible
solution, and let α be a continuous function given by (1.33,1.34). Suppose further that for
each µ, there exists a solution xµ ∈ X to the problem min{f(x) + µα(x) : x ∈ X}, and
that {xµ} is contained in a compact subset of X . Then,

min{f(x) : g(x) ≤ 0,h(x) = 0,x ∈ X} = sup
µ≥0

θ(µ) = lim
k→∞

θ(µ),

with θ(µ) := f(xµ) + µα(xµ). Furthermore, the limit x̄ of any convergent subsequence
of {xµ} is an optimal solution to the original problem and µα(xµ)→ 0 as µ→∞.

Proof. See [6, Theorem 9.2.2] for a proof.

Note that the assumption that X is compact is necessary, for it possible that the optimal
objective values of the original and penalty problems are not equal otherwise. Yet, this
assumption is not very restrictive in most practical cases as the variables usually lie between
finite upper and lower bounds. Note also that no restriction is imposed on f , g and h
other than continuity. However, the application of an efficient solution procedure for the
(unconstrained) auxiliary problems may impose additional restriction on these functions
(see � 1.8.3).

Under the conditions that (i) f , g, h in (1.32) and φ, ψ in (1.33,1.34) are continuously
differentiable, and (ii) x̄ is a regular point (see Definitions 1.36 and 1.47), the solution to
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the penalty problem can be used to recover the Lagrange multipliers associated with the
constraints at optimality. In the particular case where X = IRnx , we get

νµi = µφ′ [gi(x
µ)] ∀i ∈ A(x̄) (1.35)

λµi = µψ′ [hi(x
µ)] ∀i = 1, . . . , nh. (1.36)

The larger µ, the better the approximation of the Lagrange multipliers,

νµ → ν? and λµ → λ? as µ→∞.

Example 1.73. Consider the same problem as in Example 1.71. The auxiliary function
f(x) + µα(x) = x + µmax{0, 2 − x}2 being continuously differentiable, the Lagrange
multiplier associated to the inequality constraint g(x) = −x + 2 ≤ 0 can be recovered as
νµ = 2µmax{0, 2−xµ} = 1 (assuming µ > 0). Note that the exact value of the Lagrange
multiplier is obtained for each µ > 0 here, because g is a linear constraint.

From a computational viewpoint, superlinear convergence rates might be achievable, in
principle, by applying Newton’s method (or its variants such as quasi-Newton methods).
Yet, one can expect ill-conditioning problems when µ is taken very large in the penalty
problem. With a large µ, more emphasis is placed on feasibility, and most procedures for
unconstrained optimization will move quickly towards a feasible point. Even though this
point may be far from the optimum, both slow convergence and premature termination can
occur due to very small step size and finite precision computations (round-off errors).

As a result of the above mentioned difficulties associated with large penalty parameters,
most algorithms using penalty functions employ a sequence of increasing penalty parame-
ters. With each new value of the penalty parameter, an optimization technique is employed,
starting with the optimal solution corresponding to the previously chosen parameters value.
such an approach is often referred to as sequential unconstrained minimization (SUM)
technique. This way, a sequence of infeasible points is typically generated, whose limit
is an optimal solution to the original problem (hence the term exterior penalty function
approach).

To conclude our discussion on the penalty function approach, we give an algorithm to
solve problem (1.32), where the penalty function used is of the form specified in (1.33,1.34).

Initialization Step
Let ε > 0 be a termination scalar, and choose an initial point x0, a penalty parameter
µ0 > 0, and a scalar β > 1. Let k = 0 and go to the main step.

Main Step

1. Starting with xk, get a solution to the problem

xk+1 ∈ arg min{f(x) + µkα(x) : x ∈ X}

2. If µkα(xk+1) < ε, stop; otherwise, let µk+1 = βµk, replace k ← k + 1, and
go to step 1.
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1.8.4.2 Interior-Point Methods Similar to penalty functions, barrier functions can
also be used to transform a constrained problem into an unconstrained problem (or into
a sequence of unconstrained problems). These functions act as a barrier and prevent the
iterates from leaving the feasible region. If the optimal solution occurs at the boundary of
the feasible domain, the procedure moves from the interior to the boundary of the domain,
hence the name interior-point methods. To illustrate these methods, consider the NLP
problem

min
x

f(x)

s.t. g(x) ≤ 0
x ∈ X

(1.37)

where X is a subset of IRnx , and f : X → IR, g : X → IRng are continuous on IRnx .
Note that equality constraints, if any, should be accommodated within the set X . (In the
case of affine equality constraints, one can possibly eliminate them after solving for some
variables in terms of the others, thereby reducing the dimension of the problem.) The
reason why this treatment is necessary is because barrier function methods require the set
{x ∈ IRnx : g(x) < 0} to be nonempty; this would obviously be not possible if the equality
constraints h(x) = 0 were accommodated within the set of inequalities as h(x) ≤ 0 and
h(x) ≥ 0.

A barrier problem formulates as

min
x

θ(µ)

s.t. µ ≥ 0,
(1.38)

where θ(µ) := inf{f(x) + µb(x) : g(x) < 0,x ∈ X}. Ideally, the barrier function
b should take value zero on the region {x : g(x) ≤ 0}, and value ∞ on its boundary.
This would guarantee that the iterates do not leave the domain {x : g(x) ≤ 0} provided
the minimization problem started at an interior point. However, this discontinuity poses
serious difficulties for any computational procedure. Therefore, this ideal construction of
b is replaced by the more realistic requirement that b be nonnegative and continuous over
the region {x : g(x) ≤ 0} and approach infinity as the boundary is approached from the
interior:

b(x) =

ng
∑

k=1

φ[gk(x)], (1.39)

where φ is a continuous function over {z : z < 0} that satisfies the conditions
{

φ(z) ≥ 0 if z < 0
limz→0− φ(z) = +∞ . (1.40)

In particular,µb approaches the ideal barrier function described above as µ approaches zero.
Typically barrier functions are

b(x) = −
ng
∑

k=1

1

gk(x)
or b(x) = −

ng
∑

k=1

ln[min{1,−gk(x)}].

The following barrier function, known as Frisch’s logarithmic barrier function, is also
widely used

b(x) = −
ng
∑

k=1

ln[−gk(x)].



NUMERICAL METHODS FOR NONLINEAR PROGRAMMING PROBLEMS 47

The function f(x) + µb(x) is referred to as the auxiliary function.
Given µ > 0, evaluating θ(µ) = inf{f(x) + µb(x) : g(x) < 0,x ∈ X} seems no

simpler than solving the original problem because of the constraint g(x) < 0. However,
starting the optimization from a point in the region S := {x : g(x) < 0} ∩ X yields
an optimal point in S, even when the constraint g(x) < 0 is ignored. This is because b
approaches infinity as the iterates approach the boundary of {x : g(x) ≤ 0} from within
S, hence preventing them from leaving the set S. This is formalized in the following:

Theorem 1.74. Consider the NLP problem (1.37), where f and g are continuous functions
on IRnx and X is a nonempty convex set in IRnx . Suppose that (1.37) has an optimal
solution x? with the property that, given any neighborhood Bη (x?) around x?, there exists
an x ∈ X ∩ Bη (x?) such that g(x) < 0. Suppose further that for each µ, there exists a
solution xµ ∈ X to the problem min{f(x) + µb(x) : x ∈ X}. Then,

min{f(x) : g(x) ≤ 0,x ∈ X} = lim
µ↓0

θ(µ) = inf
µ>0

θ(µ),

with θ(µ) := f(xµ) + µb(xµ). Furthermore, the limit of any convergent subsequence of
{xµ} is an optimal solution to the original problem, and µb(xµ)→ 0 as µ→ 0.

Proof. See [6, Theorem 9.4.3] for a proof.

Under the conditions that (i) f , g in (1.32) and φ in (1.33,1.34) are continuously dif-
ferentiable, and (ii) x̄ is a regular point (see Definitions 1.36 and 1.47), the solution to the
barrier function problem can be used to recover the Lagrange multipliers associated with
the constraints at optimality. In the particular case where X = IRnx , we get

νµi = µφ′ [gi(x
µ)] ∀i ∈ A(x̄). (1.41)

The approximation of the Lagrange multipliers, gets better as µ gets closer to 0,

νµ → ν? as µ→ 0+.

Example 1.75. Consider the problem to minimize f(x) = x, subject to g(x) = −x+2 ≤ 0,
the solution of which lies at the point x? = 2 with objective value f(x?) = 2.

Now, consider the barrier function problem to minimize f(x)+µb(x) = x− µ
2−x in IR,

where µ is a large number. Note first that for any µ, the auxiliary function is convex. Thus,
a necessary and sufficient condition for optimality is that the gradient of f(x) + µb(x) be
equal to zero, yielding xµ = 2 +

√
µ (assuming µ > 0). Thus, the solution of the penalty

problem can be made arbitrarily close to the solution of the original problem by choosing
µ sufficiently close to zero. Moreover, f(xµ) + µb(xµ) = 2 − 2

√
µ, which can also be

made arbitrarily close to f(x?) by taking µ sufficiently close to zero. These considerations
are illustrated in Fig. 1.19. below.

Regarding the Lagrange multiplier associated to the inequality constraint g(x) =
−x + 2 ≤ 0, the objective and constraint functions being continuously differentiable,
an approximate value can be obtained as νµ = µ

2−xµ
2

= 1. Here again, the exact value of
the Lagrange multiplier is obtained for each µ > 0 because g is a linear constraint.

The use of barrier functions for solving constrained NLP problems also faces several
computational difficulties. First, the search must start with a point x ∈ X such that
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Figure 1.19. Illustration of the barrier (left plot) and auxiliary (right plot) functions in Example 1.75.

g(x) < 0, and finding such a point may not be an easy task for some problems. Also,
because of the structure of the barrier function b, and for small values of the parameter
µ, most search techniques may face serious ill-conditioning and difficulties with round-off
errors while solving the problem to minimize f(x) + µb(x) over x ∈ X , especially as
the boundary of the region {x : g(x) ≤ 0} is approached. Accordingly, interior-point
algorithms employ a sequence of decreasing penalty parameters {µk} → 0 as k → ∞;
with each new value µk, an optimal solution to the barrier problem is sought by starting
from the previous optimal solution. As in the exterior penalty function approach, it is highly
recommended to use suitable second-order Newton or quasi-Newton methods for solving
the successive barrier problems.

We describe below a scheme using barrier functions of the form (1.39,1.40) for optimizing
a nonlinear programming problem such as (1.37).

Initialization Step
Let ε > 0 be a termination scalar, and choose an initial point x0 with g(x0) < 0. Let
µ0 > 0, β ∈ (0, 1), k = 0, and go to the main step.

Main Step

1. Starting with xk, get a solution to the problem

xk+1 ∈ argmin{f(x) + µkb(x) : x ∈ X}

2. If µkb(xk+1) < ε, stop; otherwise, let µk+1 = βµk, replace k ← k + 1, and
go to step 1.

Note that although the constraint g(x) < 0 may be ignored, it is considered in the
problem formulation as most line search methods use discrete steps, and a step could lead
to a point outside the feasible region (where the value of the barrier function is a large
negative number), when close to the boundary. Therefore, the problem can effectively be
treated as an unconstrained optimization problem only if an explicit check for feasibility is
made.

In recent years, there has been much excitement because some variants of the interior-
point algorithm can be shown to be polynomial in time for many classes of convex programs.
Moreover, interior-point codes are now proving to be highly competitive with codes based
on other algorithms, such as SQP algorithms presented subsequently. A number of free and
commercial interior-point solvers are given in Tab. 1.1. below.
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Table 1.1. A number of open-source and commercial codes implementing interior-point
techniques for NLP problems.

Solver Website Licensing Characteristics

IPOPT projects.coin-or.org/Ipopt free, open source line search, filter, preconditioned CG
LOQO www.princeton.edu/˜rvdb/ commercial primal-dual, direct factorization
KNITRO www.ziena.com/knitro.htm commercial trust-region, primal barrier/SQP with

primal-dual scaling, direct factoriza-
tion/preconditioned CG

Note first that there is currently no function implementing interior-point methods for
NLP problems in the version 3.0.2 of MATLAB � ’s Optimization Toolbox. The solvers
listed in Tab. 1.2. are stand-alone (either in C/C++ or fortran77 programming language).
However, all can be used through the modeling language AMPL (http://www.ampl.
com/); KNITRO can also be used in MATLAB � through both the TOMLAB optimization
environment (http://tomopt.com/tomlab/)and the modeling language GAMS (http:
//www.gams.com/).

1.8.4.3 Successive Quadratic Programming Successive quadratic programming
(SQP) methods, also known as sequential, or recursive, quadratic programming, employ
Newton’s method (or quasi-Newton methods) to directly solve the KKT conditions for the
original problem. As a result, the accompanying subproblem turns out to be the minimiza-
tion of a quadratic approximation to the Lagrangian function subject to a linear approxima-
tion to the constraints. Hence, this type of process is also known as a projected Lagrangian,
or the Newton-Lagrange, approach. By its nature, this method produces both primal and
dual (Lagrange multiplier) solutions.

Equality Constrained Case. To present the concept of SQP, consider first the nonlinear
problem P to

minimize: f(x)

subject to: hi(x) = 0, i = 1, . . . , nh,

where x ∈ IRnx , and f , h are twice continuously differentiable. We shall also assume
throughout that the equality constraints are linearly independent at a solution of P. (The
extension for including inequality constraints is considered subsequently.)

By Theorem 1.50, the first-order necessary conditions of optimality for Problem P require
a primal solution x? ∈ IRnx and a Lagrange multiplier vector λ? ∈ IRnh such that

0 = ∇xL(x?,λ?) = ∇f(x?) + ∇h(x?)
T
λ? (1.42)

0 = ∇λL(x?,λ?) = h(x?), (1.43)

where L(x,λ) := f(x) + λTh(x). Now, consider a Newton-like method to solve
(1.42,1.43). Given an iterate (xk,λk), a new iterate (xk+1,λk+1) is obtained by solv-
ing the first-order approximation

0 =

(

∇xL(xk,λk)

∇λL(xk,λk)

)

+

(

∇
2
xxL(xk,λk) ∇h(xk)

T

∇h(xk) 0

)

(

xk+1 − xk

λk+1 − λk
)
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to (1.42,1.43). Denoting dk := xk+1 − xk, the above linear system can be rewritten as
(

∇
2
xxL(xk,λk) ∇h(xk)

T

∇h(xk) 0

)

(

dk

λk+1

)

= −
(

∇f(xk)
h(xk)

)

, (1.44)

which can be solved for (dk,λk+1), if a solution exists. Setting xk+1 := xk + dk, and
incrementing k by 1, we can then repeat the process until dk = 0 happens to solve (1.44).
When this occurs, if at all, noting (1.42,1.43), we shall have found a stationary point to
Problem P.

Interestingly enough, a quadratic programming (QP) minimization subproblem can be
employed in lieu of the foregoing linear system to find any optimal solution for P,

min
dk

f(xk) + ∇f(xk)
T
dk +

1

2
dk

T
∇

2
xxL(xk,λk)dk (QP(xk,λk))

s.t. hi(x) + ∇hi(x
k)

T
dk = 0 i = 1, . . . , nh.

Note in particular that an optimum dk to QP(xk,λk), if it exists, together with the set
of Lagrange multipliers λk+1 associated with the linearized constraints, is a stationary
point for QP(xk,λk) and satisfies equations (1.42,1.43). That is, solving QP(xk,λk) is
attractive because it tends to drive the solution towards a desirable stationary point satisfying
(1.42,1.43) whenever alternatives exist. Assuming a well-behaved QP, a rudimentary SQP
algorithm is as follows:

Initialization Step
Choose an initial primal/dual point (x0,λ0), let k = 0, and go to the main step.

Main Step

1. Solve the quadratic subproblem QP(xk,λk) to obtain a solution dk along with
a set of Lagrange multipliers λk+1.

2. If dk = 0, then (dk,λk+1) satisfies the stationarity conditions (1.42,1.43) for
problem P; stop. Otherwise, let xk+1 := xk + dk, replace k ← k + 1, and go
to step 1.

In the case x? is a regular stationary solution for Problem P which, together with a set of
Lagrange multipliersλ?, satisfies the second-order sufficiency conditions of Theorem 1.59,
then the matrix

W :=

(

∇
2
xxL(xk,λk) ∇h(xk)

T

∇h(xk) 0

)

,

can be shown to be nonsingular. Hence, the above rudimentary SQP algorithm exhibits a
quadratic rate of convergence by Theorem 1.68.

Extension to Inequality Constrained Case. We now consider the inclusion of inequality
constraints gi(x) ≤ 0, i = 1, . . . , ng, in Problem P,

minimize: f(x)

subject to: gi(x) ≤ 0, i = 1, . . . , ng

hi(x) = 0, i = 1, . . . , nh,
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where g is twice continuously differentiable.
Given an iterate (xk,λk,νk), where λk and νk ≥ 0 are the Lagrange multiplier esti-

mates for the equality and inequality constraints, respectively, consider the following QP
subproblem as a direct extension of QP(xk,λk):

min
dk

f(xk) + ∇f(xk)
T
dk +

1

2
dk

T
∇

2
xxL(xk,λk,νk)dk (QP(xk,λk,νk))

s.t. gi(x) + ∇gi(x
k)

T
dk = 0 i = 1, . . . , ng

hi(x) + ∇hi(x
k)

T
dk = 0 i = 1, . . . , nh,

where L(x,λ,ν) := f(x) + νTg(x) + λTh(x). Note that the KKT conditions for
QP(xk,λk,νk) require that, in addition to primal feasibility, Lagrange multipliers λk+1,
νk+1 be found such that

∇f(xk) + ∇
2
xxL(xk,λk,νk)dk + ∇g(xk)

T
νk+1 + ∇h(xk)

T
λk+1 = 0

[

g(xk) + ∇g(xk)
T
dk
]T
νk+1 = 0,

with νk+1 ≥ 0 and λk+1 unrestricted in sign. Clearly, if dk = 0, then xk together with
λk+1, νk+1 yields a KKT solution to the original problem P. Otherwise, we set xk+1 :=
xk + dk as before, increment k by 1, and repeat the process. Regarding convergence rate,
it can be shown that if x? is a regular KKT solution which, together with λ?, ν? satisfies
the second-order sufficient conditions of Theorem 1.63, and if (x0,λ0,ν0) is initialized
sufficiently close to (x?,λ?,ν?), then the foregoing iterative procedure shall exhibit a
quadratic convergence rate.

An Improved SQP Algorithm. The SQP method, as presented thus far, obviously shares
the disadvantages of Newton’s method: (i) it requires second-order derivatives ∇

2
xxL to

be calculated, which in addition might not be positive definite, and (ii) it lacks the global
convergence property.

(i) Regarding second-order derivatives, a quasi-Newton positive definite approximation
can be used for ∇

2
xxL. For example, given a positive definite approximation Bk

for ∇
2
xxL(xk,λk,νk), the quadratic problem QP(xk,λk,νk) can be solved with

∇
2
xxL(xk,λk,νk) replaced by Bk. For example, an approximation of the inverse

Hessian matrix can be obtained via a Broyden-like procedure (1.31), with γk given
by

γk := ∇L(xk+1,λk+1,νk+1)−∇L(xk,λk+1,νk+1),

as explained earlier in � 1.8.3.2. It can be shown that this modification to the rudimen-
tary SQP algorithm, similar to the quasi-Newton modification of Newton’ algorithm,
looses the quadratic convergence rate property. Instead, it can be shown that the con-
vergence is superlinear when initialized sufficiently close to a solution (x?,λ?,ν?)
that satisfies both regularity and second-order sufficiency conditions. However, this
superlinear convergence rate is strongly based on the use of unit step sizes (see point
(ii) below).

(ii) In order to remedy the global convergence deficiency, a globalization strategy can be
used, e.g., a line search procedure (see � 1.8.3.1). Unlike unconstrained optimization
problems, however, the choice of a suitable line search (or merit) function providing
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a measure of progress is not obvious in the presence of constraints. Two such popular
choices of a line search function are

◦ The `1 Merit Function:

`1(x;µ) := f(x) + µ

[

nh
∑

i=1

|hi(x)|+
ng
∑

i=1

max{0, gi(x)}
]

, (1.45)

which satisfies the important property thatx? is a local minimizer of `1, provided
(x?,λ?,ν?) satisfies the second-order sufficient conditions (see Theorem 1.63)
and the penalty parameter µ is so chosen that µ > |λ?i |, i = 1, . . . , nh, and
µ > ν?i , i = 1, . . . , ng. Yet, the `1 merit function is not differentiable at those
x with either gi(x) = 0 or hi(x) = 0, and it can be unbounded below even
though x? is a local minimizer.

◦ The Augmented Lagrangian (ALAG) Merit Function:

`2(x,λ,ν;µ) := f(x) +

nh
∑

i=1

λihi(x) +
µ

2

nh
∑

i=1

[hi(x)]2 +
1

2

ng
∑

i=1

ψi(x,ν;µ)

(1.46)

with ψi(x,ν;µ) := 1
µ

(

max{0, νi + µgi(x)}2 − ν2
i

)

, has similar properties to
the `1 merit function, provided µ is chosen large enough, and is continuously
differentiable (although its Hessian matrix is discontinuous). Yet, for x? to be
a (local) minimizer of `2(x,λ,ν;µ), it is necessary that λ = λ? and ν = ν?.

An SQP algorithm including the modifications discussed in (i) and (ii) is as follows:

Initialization Step
Choose an initial primal/dual point (x0,λ0,ν0), with ν0 ≥ 0, and a positive definite
matrix B0. Let k = 0, and go to the main step.

Main Step

1. Solve the quadratic subproblem QP(xk,λk,νk), with ∇
2
xxL(xk,λk,νk) re-

placed by Bk, to obtain a direction dk along with a set of Lagrange multipliers
(λk+1,νk+1).

2. If dk = 0, then (xk,λk+1,νk+1) satisfies the KKT conditions for problem P;
stop.

3. Findxk+1 := xk+αkdk, whereαk improves `1(xk+αdk) over {α ∈ IR : α >

0} [or any other suitable merit functions]. Update Bk to a positive definite matrix
Bk+1 [e.g., according to the quasi-Newton update scheme (1.31)]. Replace
k ← k + 1, and go to step 1.

A number of free and commercial interior-point solvers is given in Tab 1.2. below.
Note first that fmincon is the function implementing SQP in the version 3.0.2 of

MATLAB � ’s Optimization Toolbox. The other solvers listed in Tab. 1.2. are stand-alone
(either in C/C++ or fortran77 programming language). However, NLPQL, SNOPT and
filterSQP can be used in MATLAB � through the TOMLAB optimization environment
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Table 1.2. A number of open-source and commercial codes implementing SQP techniques.

Solver Website Licensing Characteristics

fmincon http://www.mathworks.com/access/

helpdesk/help/toolbox/optim/

commercial line search, active set, dense
problems

NLPQL http://www.uni-bayreuth.de/

departments/math/~kschittkowski/

nlpqlp22.htm

commercial line search, active set, dense
problems

RFSQP http://www.aemdesign.com/

RFSQPwhatis.htm

free for acad. line search, active set, feasible
SQP, dense problem

SNOPT http://www.sbsi-sol-optimize.com/

asp/sol_products_snopt_desc.htm

commercial line search, active set, re-
duced Hessian, sparse/large-
scale problems

filterSQP http://www-unix.mcs.anl.gov/

~leyffer/solvers.html

commercial trust region, exact Hessian,
dense/sparse problems

(http://tomopt.com/tomlab/); RFSQP, SNOPT and filterSQP can be used through
the AMPL modeling language (http://www.ampl.com/); and, finally, SNOPT can be
used through the modeling language GAMS (http://www.gams.com/).

Example 1.76. Consider the problem to find a solution to the problem

min
x∈IR2

f(x) := x2
1 + x2

2 + log(x1x2) (1.47)

s.t. g(x) := 1− x1x2 ≤ 0

0 ≤ x1, x2 ≤ 10.

We solved this problem using the function fmincon of the Optimization Toolbox in
MATLAB � . The M-files are as follows:

1 clear all

2 x0 = [ 2; 1 ];

3 xL = [ 0.1; 0.1 ];

4 xU = [ 10; 10 ];

5 options = optimset(’Display’, ’iter’, ’GradObj’, ’on’, ...

6 ’GradConstr’, ’on’, ’DerivativeCheck’, ’on’, ...

7 ’LargeScale’, ’off’, ’HessUpdate’, ’bfgs’, ...

8 ’Diagnostics’, ’on’, ’TolX’, 1e-7, ...

9 ’TolFun’, 1e-7, ’TolCon’, 1e-7, ...

10 ’MaxFunEval’, 100, ’MaxIter’, 100 )

11 [xopt, fopt, iout] = fmincon( @SQP_fun, x0, [], [], [], [], xL, xU, ...

12 @SQP_ctr, options );

1 %%%%%%%%%%%%%%% FUNCTION TO BE MINIMIZED %%%%%%%%%%%%%%%

2 % Objective: f(x,y) := x^2+y^2+log(x*y)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 function [f,df] = SQP_fun(x)

5 f = x(1)^2+x(2)^2+log(x(1)*x(2)); % function

6 if nargout > 1
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7 df = [ 2*x(1)+1/x(1) % gradient

8 2*x(2)+1/x(2) ];

9 end

10 end

1 %%%%%%%%%%%%%%%%%%%%%% CONSTRAINTS %%%%%%%%%%%%%%%%%%%%%

2 % inequality constraint: g(x,y) := x*y

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 function [g,h,dg,dh] = SQP_ctr(x)

5 g = [ 1-x(1)*x(2) ]; % inequality constraints

6 h = []; % equality constraints

7 if nargout > 2

8 dg = [ -x(2); -x(1) ]; % gradient of inequality constraints

9 dh = []; % gradient of equality constraints

10 end

11 end

The results are shown in Fig. 1.20. Notice, the rather fast convergence to the optimal
solution x? = (1, 1). Note also that the SQP algorithm does not necessarily take a feasible
path to reach an optimal solution.
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Figure 1.20. SQP iterates for Problem (1.47).

What Can Go Wrong?. The material presented up to this point was intended to give the
reader an understanding of how SQP methods should work. Things do not go so smoothly in
practice though. We now discuss a number of common difficulties that can be encountered,
and suggest remedial actions to correct the deficiencies. Because real applications may
involve more than a single difficulty, the user must be prepared to correct all problems
before obtaining satisfactory performance from an optimization software.
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Infeasible Constraints One of the most common difficulties occurs when the NLP problem
has infeasible constraints, i.e., the constraints taken all together have no solution.
Applying general-purpose SQP software to such problems typically produces one or
more of the following symptoms:

◦ one of the QP subproblem happen to be infeasible, which occurs when the linearized
constraints have no solution;

◦ many NLP iterations produce very little progress;

◦ the penalty parameters µ in (1.45) or (1.46) grows very large; or

◦ the Lagrange multipliers become very large.

Although robust SQP software attempt to diagnose this situation, ultimately the only
remedy is to reformulate the NLP.

Rank-Deficient Constraints In contrast to the previous situation, it is possible that the
constraints be consistent, but the Jacobian matrix of the active constraints, at the
solution point, be either ill-conditioned or rank deficient. This situation was illustrated
in Examples 1.43 and 1.55. The application of general-purpose SQP software is likely
to produce the following symptoms:

◦ many NLP iterations produce very little progress;

◦ the penalty parameters µ in (1.45) or (1.46) grows very large;

◦ the Lagrange multipliers become very large; or

◦ the rank deficiency in the Jacobian of the active constraints is detected.

Note that many symptoms of rank-deficient constraints are the same as those of
inconsistent constraints. It is therefore quite common to confuse this deficiency with
inconsistent constraints. Again, the remedy is to reformulate the problem.

Redundant Constraints A third type of difficulty occurs when the NLP problem contains
redundant constraints. Two types of redundancy may be distinguished. In the first
type, some of the constraints are unnecessary to the problem formulation, which
typically results in the following symptoms:

◦ the Lagrange multipliers are close to zero; and

◦ the solver has difficulty in detecting the active set.

In the second type, the redundant constraints give rise to rank deficiency,and the prob-
lem then exhibits symptoms similar to the rank-deficient case discussed previously.
Obviously, the remedy is to reformulate the problem by eliminating the redundant
constraints.

Discontinuities Perhaps the biggest obstacle encountered in the practical application of
SQP methods (as well as many other NLP methods including SUM techniques) is the
presence of discontinuous behavior. All of the numerical methods described herein
assume continuous and differentiable objective function and constraints. Yet, there
are many common examples of discontinuous functions in practice, including: IF

tests in codes; absolute value, min, and max functions; linear interpolation of data;
internal iterations such as root finding; etc.
Regarding SQP methods, the standard QP subproblems are no longer appropriate
when discontinuities are present. In fact, the KKT necessary conditions simply do
not apply! The most common symptoms of discontinuous functions are:
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◦ the iterates converge slowly or, even, diverge;

◦ the line search takes very small steps (α ≈ 0); and

◦ the Hessian matrix becomes badly ill-conditioned.

The remedy consists in reformulating discontinuous problems into smooth problems:
for absolute value, min, and max functions, tricks can be used that introduce slack
variables and additional constraints; linear data interpolation can be replaced by
higher order interpolation schemes that are continuous through second derivatives;
internal iterations can also be handled via additional NLP constraints; etc.

Inaccurate Gradient Estimation Any SQP code requires that the user supply the objective
function and constraint values, as well as their gradient (and possibly their Hessian
too). In general, the user is proposed the option to calculate the gradients via finite
differences, e.g.,

∇f(x) ≈ f(x + δx)− f(x)

δx
.

However, this may cause the problem to stop prematurely. First of all, the choice of
the perturbation vector δx is highly non trivial. If too large a value clearly provides
inaccurate estimates, too small a value may also result in very bad estimates due to
finite arithmetic precision computations. Therefore, one must try to find a trade-off
between these two extreme situations. The difficulty stems from the fact that a trade-
off may not necessarily exist if the requested accuracy for the gradient is too high.
In other word, the error made in the finite-difference approximation of a gradient
cannot be made as small as desired. Further, the maximum accuracy that can be
achieved with finite difference is both problem dependent (e.g., badly-scaled func-
tions are more problematic than well-scaled functions) and machine dependent (e.g.,
double precision computations provides more accurate estimates than single
precision computations). Typical symptoms of inaccurate gradient estimates in an
SQP code are:

◦ the iterates converge slowly, and the solver may stop prematurely at a suboptimal point
(jamming); and

◦ the line search takes very small steps (α ≈ 0).

The situation can be understood as follows. Assume that the gradient estimate is
contaminated with noise. Then, instead of computing the true value ∇L(x), we
get ∇L(x) + ε. But since the iteration seeks a point such that ∇L(x) = 0, we can
expect either a degraded rate of convergence or, worse, no convergenceat all, because
ultimately the gradient will be dominated by noise.

To avoid these problems, the user should always consider providing the gradients
explicitely to the SQP solver, instead of relying on finite-difference estimates. For
large-scale problems, this is obviously a time-consuming and error-prone task. In
response to this, efficient algorithmic differentiation tools (also called automatic
differentiation) have been developed within the last fifteen years. The idea behind
it is that, given a piece of program calculating a number of function values (e.g.,
in fortran77 or C language), an auxiliary program is generated that calculates the
derivatives of these functions. (See, e.g., the book by A. Griewank [24] for a general
introduction on the topic.)

Scaling Scaling affects everything! Poor scaling can make a good algorithm behave badly.
Scaling changes the convergence rate, termination tests, and numerical conditioning.
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The most common way of scaling a problem is by introducing scaled variables of the
form

x̃k := ukxk + rk,

for k = 1, . . . , nx, with uk and rk being scale weights and shifts, respectively.
Likewise, the objective function and constraints are commonly scaled using

f̃ := ω0f

g̃k := ωkgk,

for k = 1, . . . , ng . The idea is to let the optimization algorithm work with the
well-scaled quantities in order to improve performance. However, what well-scaled
quantities mean is hard to define, although conventional wisdom suggests the follow-
ing hints

◦ normalize the independent variables to have the same range, e.g., 0 ≤ x̃k ≤ 1;

◦ normalize the dependent functions to have the same magnitude, e.g., f̃ ≈ g̃1 ≈ . . . ≈
g̃ng ≈ 1;

◦ normalize the rows and columns of the Jacobian to be of the same magnitude;

◦ scale the dependent functions so that the Lagrange multipliers are close to one, e.g.,
|λ1| ≈ . . . ≈ |λng | ≈ 1; etc.

1.9 NOTES AND REFERENCES

The material on convex optimization ( � 1.3) is taken from the book by Boyd and Vanden-
berghe [10, Chapters 2 and 3]. Many more details and properties of convex programs can
be found in this book, together with algorithms specifically tailored to such problems.

Regarding conditions of optimality, the material presented in � 1.4 and � 1.5 is mostly a
summary of the material in Bazaraa, Sherali and Shetty’s book [6, Chap. 4 and 5]. The
derivation of necessary and sufficient conditions of optimality for equality constrained
problems in � 1.6 is inspired from the material in Luenberger’s book [36, Chap. 10].

Additional information on the concept of algorithm ( � 1.8.1) and, more particularly, on
the convergence aspects can be found ,e.g., in [6, Chap. 7] and [36, Chap. 6]. Regarding,
unconstrained minimization techniques ( � 1.8.3), many additional details are given in Bert-
sekas’ book [7, Chap. 1], as well as in [6, Chap. 8] and [36, Chap. 7 to 9]. More information
on sequential unconstrained minimization algorithms ( � 1.8.4.1 and 1.8.4.2) can be found
in [6, Chap. 9] and [36, Chap. 12]; and on sequential quadratic programming algorithms
( � 1.8.4.3), in [6, Chap. 10]. Many practical details on the numerical algorithms were also
found in Betts’ book [8, Chap. 1] and Herskovits’ overview article [26].

Finally, material on Lagrangian duality theory and saddle point optimality conditions
has been omitted from this chapter. The interested reader in referred to [6, Chap. 6].

Appendix: Technical Lemmas and Alternative Proofs

Theorem 1.A.77 (Farkas’ Theorem). Let A be an m × n matrix and c be an n vector.
Then, exactly one of the following two statements holds:

System 1. ∃x ∈ IRn such that Ax ≤ 0 and cTx > 0,
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System 2. ∃y ∈ IRm such that ATy = c and y ≥ 0.

Proof. See, e.g., [6, Theorem 2.4.5] for a proof.

Farkas’ Theorem is used extensively in the derivation of optimality conditions of (linear
and) nonlinear programming problems. A geometrical interpretation of Farkas’ Theorem
is shown in Fig. 1.A.1.. If a1, . . . , am denote the rows of A, then system 2 has a solution
if c lies in the convex cone generated by a1, . . . , am; On the other hand, system 1 has a
solution if the closed convex cone {x : Ax ≤ 0} and the open half-space {x : cTx > 0}
have a nonempty intersection.
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Figure 1.A.1. Illustration of Farkas’ Theorem (with n = 2 and m = 4).

Corollary 1.A.78 (Gordan’s Theorem). Let A be an m× n matrix. Then, exactly one of
the following two statements holds:

System 1. ∃x ∈ IRn such that Ax < 0,

System 2. ∃y ∈ IRm,y 6= 0 such that ATy = 0 and y ≥ 0.

Proof. System 1 can be equivalently written as Ax + %e where % > 0 is a scalar and e is
a vector of m ones. Rewriting this in the form of System 1 in Farkas’ Theorem 1.A.77,
we get (A e)p and (0, . . . , 0, 1)p > 0 where p := (x %). The associated System 2 by
Farkas’ Theorem 1.A.77 states that (A e)

T
(0, . . . , 0, 1)

T and y ≥ 0 for some y ∈ IRm,
i.e., ATy = 0, eTy = 1 and y ≥ 0, which is equivalent to the System 2 of the corollary.

Below is an alternative proof for Theorem 1.50 on p. 24 that does not use the concept of
tangent sets.

Alternative Proof for Theorem 1.50. For k = 1, 2, . . ., let ϕk : IRnx → IR be the (continu-
ously differentiable) functions defined as:

ϕk(x) = f(x) +
k

2
‖h(x)‖2 +

α

2
‖x− x?‖2,

where α > 0. Let also ε > 0 be chosen such that:

f(x?) ≤ f(x) ∀x ∈ B̄ε (x?) ,
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with B̄ε (x?) := {x ∈ D : ‖x − x?‖ ≤ ε}, and denote xk ∈ arg min{ϕk(x) : x ∈
B̄ε (x?)}. 6

Since x? ∈ B̄ε (x?), we have

f(xk) +
k

2
‖h(xk)‖2 +

α

2
‖x− x?‖2 = ϕk(xk) ≤ ϕk(x?) = f(x?) ∀k ≥ 1.

Hence, limk→∞ ‖h(xk)‖ = 0, so for every limit point x̄ ∈ S of {xk}, we have h(x̄) = 0.
Moreover, x? being a local solution and x̄ ∈ B̄ε (x?) being a feasible point,

f(x?) ≤ f(x̄). (1.A.1)

On the other hand, noting that f(xk) + α
2 ‖x − x?‖2 ≤ f(x?) for each k ≥ 1, and taking

the limit as k →∞, we have

f(x̄) +
α

2
‖x̄− x?‖2 ≤ f(x?). (1.A.2)

Combining (1.A.1)and (1.A.2), we obtain‖x̄−x?‖ = 0, so that x̄ = x? and limk→∞ ‖x̄‖ =
x?.

Since limk→∞ ‖x̄‖ = x? and x? ∈ int
(

B̄ε (x?)
)

,

∃K1 such that xk ∈ int
(

B̄ε (x?)
)

∀k > K1,

i.e., xk is an unconstrained minimum of ϕk . By Theorem 1.22 (page 11), we get

0 = ∇ϕk(xk) = ∇f(xk) + k∇h(xk)
T
h(xk) + α(xk − x?) ∀k > K1. (1.A.3)

x? being a regular point for the equality constraints, rank (∇h(x?)) = nh. By continuity
of h,

∃K2 such that rank
(

∇h(xk)
)

= nh ∀k > K2.

Therefore, ∇h(xk)∇h(xk)
T is invertible for k > K2, and we have

kh(xk) = −
[

∇h(xk)∇h(xk)
T
]−1

∇h(xk)
[

∇f(xk) + α(xk − x?)
]

∀k > K,

where K = max{K1,K2}. Taking the limit as k →∞,

lim
k→∞

kh(xk) = λ?,

with λ? := −[∇h(x?)∇h(x?)
T
]−1∇h(x?)∇f(x?). Finally, taking the limit as k → ∞

in (1.A.3), we obtain
∇f(x?) + ∇h(x?)

T
λ? = 0.

Lemma 1.A.79. Let P and Q be two symmetric matrices, such that P � 0 and P � 0 on
the null space of Q (i.e., yTPy > 0, ∀y 6= 0 with Qy = 0). Then,

∃c̄ > 0 such that P + cQ � 0 ∀c > c̄.

6The minimum xk exists because B̄ε (x?) is nonempty, closed and bounded, and ϕk is continuous on B̄ε (x?)
— see Theorem 1.14 (page 7).
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Proof. Assume the contrary. Then,

∀k > 0, ∃xk, ‖xk‖ = 1 such that xk
T
Pxk + kxk

T
Qxk � 0. (1.A.4)

Consider a subsequence {xk}K converging to some x̄ with ‖x̄‖ = 1. Dividing (1.A.4) by
k, and taking the limit as k ∈ K→∞, we obtain

x̄TQx̄ � 0.

On the other hand, Q being semidefinite positive, we must have

x̄TQx̄ � 0,

hence x̄TQx̄ = 0. That is, using the hypothesis, x̄TPx̄ � 0. This contradicts the fact that

x̄TPx̄ + lim sup
k→∞,k∈K

kxk
T
Qxk � 0.



CHAPTER 2

CALCULUS OF VARIATIONS

“I, Johann Bernoulli, greet the most clever mathematicians in the world. Nothing is more attractive
to intelligent people than an honest, challenging problem whose possible solution will bestow fame
and remain as a lasting monument. Following the example set by Pascal, Fermat, etc., I hope to
earn the gratitude of the entire scientific community by placing before the finest mathematicians
of our time a problem which will test their methods and the strength of their intellect. If someone
communicates to me the solution of the proposed problem, I shall then publicly declare him worthy
of praise.”

—The Brachistochrone Challenge, Groningen, January 1, 1697.

2.1 INTRODUCTION

In an NLP problem, one seeks a real variable or real vector variable that minimizes (or
maximizes) some objective function, while satisfying a set of constraints,

min
x

f(x) (2.1)

s.t. x ∈ X ⊂ IRnx .

We have seen in Chapter 1 that, when the function f and the set X have a particular
functional form, a solution x? to this problem can be determined precisely. For example,
if f is continuously differentiable and X = IRnx , then x? should satisfy the first-order
necessary condition ∇f(x?) = 0.

Nonlinear and Dynamic Optimization: From Theory to Practice. By B. Chachuat�
2007 Automatic Control Laboratory, EPFL, Switzerland
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A multistage discrete-time generalization of (2.1) involves choosing the decision vari-
ables xk in each stage k = 1, 2, . . . , N , so that

min
x1,...,xN

N
∑

k=1

f(k,xk) (2.2)

s.t. xk ∈ Xk ⊂ IRnx , k = 1, . . . , N.

But, since the output in a given stage affects the result in that particular stage only, (2.2)
reduces to a sequence of NLP problems, namely, to select the decision variables xk in
each stage so as to minimize f(k,xk) onX . That is, theN first-order necessary conditions
satisfied by theN decision variables yieldN separate conditions, each in a separate decision
variable xk.

The problem becomes truly dynamic if the decision variables in a given stage affect not
only that particular stage, but also the following stage as

min
x1,...,xN

N
∑

k=1

f(k,xk,xk−1) (2.3)

s.t. x0 given
xk ∈ Xk ⊂ IRnx , k = 1, . . . , N.

Note that x0 must be specified since it affects the result in the first stage. In this case, the
N first-order conditions do not separate, and must be solved simultaneously.

We now turn to continuous-time formulations. The continuous-time analog of (2.2)
formulates as

min
x(t)

∫ t2

t1

f(t,x(t)) dt (2.4)

s.t. x(t) ∈ X(t) ⊂ IRnx , t1 ≤ t ≤ t2.

The solution to that problem shall be a real-vector-valued function x(t), t1 ≤ t ≤ t2, giving
the minimum value of f(t,x(t) at each point in time over the optimization horizon [t1, t2].
Similar to (2.2), this is not really a dynamic problem since the output at any time only affects
the current function value at that time.

The continuous-time analog of (2.3) is less immediate. Time being continuous, the
meaning of “previous period” relates to the idea that the objective function value depends
on the decision variable x(t) and its rate of change ẋ(t), both at t. Thus, the problem may
be written

min
x(t)

∫ t2

t1

f(t,x(t), ẋ(t)) dt (2.5)

s.t. x(t) ∈ X(t) ⊂ IRnx , t1 ≤ t ≤ t2. (2.6)

The calculus of variations refers to the latter class of problems. It is an old branch of
optimization theory that has had many applications both in physics and geometry. Apart
from a few examples known since ancient times such as Queen Dido’s problem (reported in
The Aeneid by Virgil), the problem of finding optimal curves and surfaces has been posed first
by physicists such as Newton, Huygens, and Galileo. Their contemporary mathematicians,
starting with the Bernoulli brothers and Leibnitz, followed by Euler and Lagrange, then
invented the calculus of variations of a functional in order to solve these problems.
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The calculus of variations offers many connections with the concepts introduced in Chap-
ter 1 for nonlinear optimization problems, through the necessary and sufficient conditions
of optimality and the Lagrange multipliers. The calculus of variations also constitutes an
excellent introduction to the theory of optimal control, which will be presented in subse-
quent chapters. This is because the general form of the problem (e.g., “Find the curve
such that...”) requires that the optimization be performed in a real function space, i.e., an
infinite dimensional space, in contrast to nonlinear optimization, which is performed in a
finite dimensional Euclidean space; that is, we shall consider that the variable is an element
of some normed linear space of real-valued or real-vector-valued functions.

Another major difference with the nonlinear optimization problems encountered in Chap-
ter 1 is that, in general, it is very hard to know with certainty whether a given problem of the
calculus of variations has a solution (before one such solution has actually been identified).
In other words, general enough, easy-to-check conditions guaranteeing the existence of a
solution are lacking. Hence, the necessary conditions of optimality that we shall derive
throughout this chapter are only instrumental to detect candidate solutions, and start from
the implicit assumption that such solutions actually exist.

This chapter is organized as follows. We start by describing the general problem of the
calculus of variations in � 2.2, and describe optimality criteria in � 2.3. A brief discussion
of existence conditions is given in � 2.4. Then, optimality conditions are presented for
problems without and with constraints in � 2.5 through � 2.7.

Throughout this chapter, as well as the following chapter, we shall make use of basic
concepts and results from functional analysis and, in particular, real function spaces. A
summary is given in Appendix A.4; also refer to � A.6 for general references to textbooks
on functional analysis.

2.2 PROBLEM STATEMENT

We are concerned with the problem of finding minima (or maxima) of a functional J : D→
IR, where D is a subset of a (normed) linear space X of real-valued (or real-vector-valued)
functions. The formulation of a problem of the calculus of variations requires two steps:
The specification of a performance criterion is discussed in � 2.2.1; then, the statement of
physical constraints that should be satisfied is described in � 2.2.2.

2.2.1 Performance Criterion

A performance criterion J, also called cost functional or simply cost must be specified for
evaluating the performance of a system quantitatively. The typical form of J is

J(x) :=

∫ t2

t1

`(t,x(t), ẋ(t))dt, (2.7)

where t ∈ IR is the real or independent variable, usually called time; x(t) ∈ IRnx , nx ≥ 1, is
a real vector variable, usually called the phase variable; the functionsx(t) = (x1, . . . , xnx),
t1 ≤ t ≤ t2 are generally called trajectories or curves; ẋ(t) ∈ IRnx stands for the derivative
of x(t) with respect to time; and ` : IR× IRnx × IRnx → IR is a real-valued function, called
a Lagrangian function or, briefly, a Lagrangian.1 Overall, we may thus think of J(x) as
dependent on an real-vector-valued continuous function x(t) ∈ X.

1The function ` has nothing to do with the Lagrangian L defined in the context of constrained optimization in
Remark 1.53.
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Instead of the Lagrange problem of the calculus of variations (2.7), we may as well
consider the problem of finding a minimum (or a maximum) to the functional

J(x) := ϕ(t1,x(t1), t2,x(t2)) +

∫ t2

t1

`(t,x(t), ẋ(t))dt, (2.8)

where ϕ : IR × IRnx × IR × IRnx → IR is a real-valued function, often called a terminal
cost. Such problems are referred to as Bolza problems of the calculus of variations in the
literature.

Example 2.1 (Brachistochrone Problem). Consider the problem of finding the curve
x(ξ), ξA ≤ ξ ≤ ξB , in the vertical plane (ξ, x), joining given points A = (ξA, xA) and
B = (ξB , xB), ξA < ξB , xA < xB , and such that a material point sliding along x(ξ)
without friction from A to B, under gravity and with initial speed vA ≥ 0, reaches B in
a minimal time (see Fig. 2.1.). This problem was first formulated then solved by Johann
Bernoulli, more than 300 years ago!

The objective function J(x) is the time required for the point to travel fromA toB along
the curve x(ξ),

J(x) =

∫ ξB

ξA

dt =

∫ ξB

ξA

ds
v(ξ)

,

where s denotes the Jordan length of x(ξ), defined by ds =
√

1 + ẋ(ξ)2dξ, and v, the
velocity along x(ξ). Since the point is sliding along x(ξ) without friction, energy is con-
served,

1

2
m
(

v(ξ)2 − v2
A

)

+mg (x(ξ)− xA) = 0,

with m being the mass of the point, and g, the gravity acceleration. That is, v(ξ) =
√

v2
A − 2g(x(ξ)− xA), and

J(x) =

∫ ξB

ξA

√

1 + ẋ(ξ)2

v2
A − 2g(x(ξ)− xA)

dξ.

The Brachistochrone problem thus formulates as a Lagrange problem of the calculus of
variations.

2.2.2 Physical Constraints

Enforcing constraints in the optimization problem reduces the set of candidate functions,
i.e., not all functions in X are allowed. This leads to the following:

Definition 2.2 (Admissible Trajectory). A trajectory x in a real linear function space X,
is said to be an admissible trajectory provided that it satisfies all of the physical constraints
(if any) along the interval [t1, t2]. The set D of admissible trajectories is defined as

D := {x ∈ X : x admissible} .

Typically, the functions x(t) are required to satisfy conditions at their end-points. Prob-
lems of the calculus of variations having end-point constraints only, are often referred to
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Figure 2.1. Brachistochrone problem.

as free problems of the calculus of variations. A great variety of boundary conditions is
of interest. The simplest one is to enforce both end-points fixed, e.g., x(t1) = x1 and
x(t2) = x2. Then, the set of admissible trajectories can be defined as

D := {x ∈ X : x(t1) = x1,x(t2) = x2}.

In this case, we may say that we seek for trajectories x(t) ∈ X joining the fixed points
(t1,x1) and (t2,x2). Such problems will be addressed in � 2.5.2.

Alternatively, we may require that the trajectory x(t) ∈ X join a fixed point (t1,x1) to
a specified curve Γ : x = g(t), t1 ≤ t ≤ T . Because the final time t2 is now free, not only
the optimal trajectory x(t) shall be determined, but also the optimal value of t2. That is,
the set of admissible trajectories is now defined as

D := {(x, t2) ∈ X× [t1, T ] : x(t1) = x1,x(t2) = g(t2)}.

Such problems will be addressed in � 2.7.3.
Besides bound constraints, another type of constraints is often required,

Jk(x) :=

∫ t2

t1

`k(t,x(t), ẋ(t))dt = Ck k = 1, . . . ,m, (2.9)

for m ≥ 1 functionals `1, . . . , `m. These constraints are often referred to as isoperimetric
constraints. Similar constraints with ≤ sign are sometimes called comparison functionals.

Finally, further restriction may be necessary in practice, such as requiring that x(t) ≥ 0
for all or part of the optimization horizon [t1, t2]. More generally, constraints of the form

Ψ (t,x(t), ẋ(t)) ≤ 0

Φ (t,x(t), ẋ(t)) = 0,

for t in some interval I ⊂ [t1, t2] are called constraints of the Lagrangian form, or path
constraints. A discussion of problems having path constraints is deferred until the following
chapter on optimal control.
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2.3 CLASS OF FUNCTIONS AND OPTIMALITY CRITERIA

Having defined an objective functional J(x) and the set of admissible trajectories x(t) ∈
D ⊂ X, one must then decide about the class of functions with respect to which the
optimization shall be performed. The traditional choice in the calculus of variations is to
consider the class of continuously differentiable functions, e.g., C1[t1, t2]. Yet, as shall
be seen later on, an optimal solution may not exist in this class. In response to this, a
more general class of functions shall be considered, such as the class Ĉ1[t1, t2] of piecewise
continuously differentiable functions (see � 2.6).

At this point, we need to define what is meant by a minimum (or a maximum) of J(x)
on D. Similar to finite-dimensional optimization problems (see � 1.2), we shall say that J

assumes its minimum value at x? provided that

J(x?) ≤ J(x), ∀x ∈ D.

This assignment is global in nature and may be made without consideration of a norm
(or, more generally, a distance). Yet, the specification of a norm permits an analogous
description of the local behavior of J at a point x? ∈ D. In particular, x? is said to be a
local minimum for J(x) in D, relative to the norm ‖ · ‖, if

∃δ > 0 such that J(x?) ≤ J(x), ∀x ∈ Bδ (x?) ∩D,

with Bδ (x?) := {x ∈ X : ‖x − x?‖ < δ}. Unlike finite-dimensional linear spaces,
different norms are not necessarily equivalent in infinite-dimensional linear spaces, in the
sense that x? may be a local minimum with respect to one norm but not with respect to
another. (See Example A.30 in Appendix A.4 for an illustration.)

Having chosen the class of functions of interest as C1[t1, t2], several norms can be used.
Maybe the most natural choice for a norm on C1[t1, t2] is

‖x‖1,∞ := max
a≤t≤b

|x(t)| + max
a≤t≤b

|ẋ(t)|,

since C1[t1, t2] endowed with ‖ · ‖1,∞ is a Banach space. Another choice is to endow
C1[t1, t2] with the maximum norm of continuous functions,

‖x‖∞ := max
a≤t≤b

|x(t)|.

(See Appendix A.4 for more information on norms and completeness in real function
spaces.) The maximum norms, ‖ · ‖∞ and ‖ · ‖1,∞, are called the strong norm and the
weak norm, respectively. Similarly, we shall endow C1[t1, t2]

nx with the strong norm
‖ · ‖∞ and the weak norm ‖ · ‖1,∞,

‖x‖∞ := max
a≤t≤b

‖x(t)‖,

‖x‖1,∞ := max
a≤t≤b

‖x(t)‖+ max
a≤t≤b

‖ẋ(t)‖,

where ‖x(t)‖ stands for any norm in IRnx .
The strong and weak norms lead to the following definitions for a local minimum:

Definition 2.3 (Strong Local Minimum, Weak Local Minimum). x? ∈ D is said to be
a strong local minimum for J(x) in D if

∃δ > 0 such that J(x?) ≤ J(x), ∀x ∈ B∞
δ (x?) ∩D.
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Likewise, x? ∈ D is said to be a weak local minimum for J(x) in D if

∃δ > 0 such that J(x?) ≤ J(x), ∀x ∈ B
1,∞
δ (x?) ∩D.

Note that for strong (local) minima, we completely disregard the values of the derivatives
of the comparison elements x ∈ D. That is, a neighborhood associated to the topology
induced by ‖ · ‖∞ has many more curves than in the topology induced by ‖ · ‖1,∞. In other
words, a weak minimum may not necessarily be a strong minimum. These important
considerations are illustrated in the following:

Example 2.4 (A Weak Minimum that is Not a Strong One). Consider the problem P to
minimize the functional

J(x) :=

∫ 1

0

[ẋ(t)2 − ẋ(t)4]dt,

on D := {x ∈ Ĉ1[0, 1] : x(0) = x(1) = 0}.
We first show that the function x̄(t) = 0, 0 ≤ t ≤ 1, is a weak local minimum for P.

In the topology induced by ‖ · ‖1,∞, consider the open ball of radius 1 centered at x̄, i.e.,
B

1,∞
1 (x̄). For every x ∈ B

1,∞
1 (x̄), we have

ẋ(t) ≤ 1, ∀t ∈ [0, 1],

hence J(x) ≥ 0. This proves that x̄ is a local minimum for P since J(x̄) = 0.
In the topology induced by ‖ · ‖∞, on the other hand, the admissible trajectories x ∈

B∞
δ (x̄) are allowed to take arbitrarily large values ẋ(t), 0 ≤ t ≤ 1. Consider the sequence

of functions defined by

xk(t) :=







1
k

+ 2t− 1 if 1
2 − 1

2k ≤ t ≤ 1
2

1
k
− 2t+ 1 if 1

2 ≤ t ≤ 1
2 + 1

2k
0 otherwise.

and illustrated in Fig. 2.2. below. Clearly, xk ∈ Ĉ1[0, 1] and xk(0) = xk(1) = 0 for each
k ≥ 1, i.e., xk ∈ D. Moreover,

‖xk‖ = max
0≤t≤1

|xk(t)| =
1

k
.

meaning that for every δ > 0, there is a k ≥ 1 such that xk ∈ B∞
δ (x̄). (E.g., by taking

k = E( 2
δ
).) Finally,

J(xk) =

∫ 1

0

[ẋk(t)
2 − ẋk(t)4] dt = [−12t]

1
2
+ 1

2k
1
2
− 1

2k

= −12

k
< 0,

for each k ≥ 1. Therefore, the trajectory x̄ cannot be a strong local minimum for P (see
Definition 2.3).
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Figure 2.2. Perturbed trajectories around x̄ = 0 in Example 2.4.

2.4 EXISTENCE OF AN OPTIMAL SOLUTION

Prior to deriving conditions that must be satisfied for a function to be a minimum (or a
maximum) of a problem of the calculus of variations, one must ask the question whether
such solutions actually exist for that problem.

In the case of optimization in finite-dimensional Euclidean spaces, it has been shown that
a continuous function on a nonempty compact set assumes its minimum (and its maximum)
value in that set (see Theorem 1.14, p. 7). Theorem A.44 in Appendix A.4 extends this
result to continuous functionals on a nonempty compact subset of a normed linear space.
But as attractive as this solution to the problem of establishing the existence of maxima and
minima may appear, it is of little help because most of the sets of interest are too “large” to
be compact.

The principal reason is that most of the sets of interest are not bounded with respect to the
norms of interest. As just an example, the set D := {x ∈ C1[a, b] : x(a) = xa, x(b) = xb}
is clearly not compact with respect to the strong norm ‖ · ‖∞ as well as the weak norm
‖ ·‖1,∞, for we can construct a sequence of curves in D (e.g., parabolic functions satisfying
the boundary conditions) which have maximum values as large as desired. That is, the
problem of minimizing, say, J(x) = −‖x‖ or J(x) =

∫ b

a
x(t) dt, on D, does not have a

solution.
A problem of the calculus of variations that does not have a minimum is addressed in

the following:

Example 2.5 (A Problem with No Minimum). Consider the problem P to minimize

J(x) :=

∫ 1

0

√

x(t)2 + ẋ(t)2dt

on D := {x ∈ C1[0, 1] : x(0) = 0, x(1) = 1}.
Observe first that for any admissible trajectory x(t) joining the two end-points, we have

J(x) =

∫ 1

0

√

x2 + ẋ2 dt >
∫ 1

0

|ẋ| dt ≥
∫ 1

0

ẋ dt = x(1)− x(0) = 1. (2.10)

That is,
J(x) > 1, ∀x ∈ D, and inf{J(x) : x ∈ D} ≥ 1.
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Now, consider the sequence of functions {xk} in C1[0, 1] defined by xk(t) := tk. Then,

J(xk) =

∫ 1

0

√

t2k + k2t2k−2dt =

∫ 1

0

tk−1
√

t2 + k2dt

≤
∫ 1

0

tk−1 (t+ k) dt = 1 +
1

k + 1
,

so we have J(xk)
k→∞−−−−→ 1. Overall, we have thus shown that inf J(x) = 1. But since

J(x) > 1 for any x in D, we know with certainty that J has no global minimizer on D.

General conditions can be obtained under which a minimum is guaranteed to exist, e.g.,
by restricting the class of functions of interest. Yet, these conditions are very restrictive
and, hence, often useless in practice. Therefore, we shall proceed with the theoretically
unattractive task of seeking maxima and minima of functions which need not have them,
as the above example shows.

2.5 FREE PROBLEMS OF THE CALCULUS OF VARIATIONS

2.5.1 Geometric Optimality Conditions

The concept of variation of a functional is central to solution of problems of the calculus of
variations. It is defined as follows:

Definition 2.6 (Variation of a Functional, Gâteaux Derivative). Let J be a functional
defined on a linear space X. Then, the first variation of J at x ∈ X in the direction ξ ∈ X,
also called Gâteaux derivative with respect to ξ at x, is defined as

δJ(x; ξ) := lim
η→0

J(x + ηξ)− J(x)

η
=

∂

∂η
J(x + ηξ)

∣

∣

∣

∣

η=0

(provided it exists). If the limit exists for all ξ ∈ X, then J is said to be Gâteaux differentiable
at x.

Note that the Gâteaux derivative δJ(x; ξ) need not exist in any direction ξ 6= 0, or it
may exist is some directions and not in others. Its existence presupposes that:

(i) J(x) is defined;

(ii) J(x + ηξ) is defined for all sufficiently small η.

Then,

δJ(x; ξ) =
∂

∂η
J(x + ηξ)

∣

∣

∣

∣

η=0

,

only if this “ordinary” derivative with respect to the real variable η exists at η = 0. Obvi-
ously, if the Gâteaux derivative exists, then it is unique.

Example 2.7 (Calculation of a Gâteaux Derivative). Consider the functional J(x) :=
∫ b

a
[x(t)]2 dt. For each x ∈ C1[a, b], the integrand [x(t)]2 is continuous and the integral is
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finite, hence J is defined on all C1[a, b], with a < b. For an arbitrary direction ξ ∈ C1[a, b],
we have

J(x+ ηξ)− J(x)

η
=

1

η

∫ b

a

[x(t) + ηξ(t)]2 − [x(t)]2 dt

= 2

∫ b

a

x(t) ξ(t) dt+ η

∫ b

a

[ξ(t)]2 dt.

Letting η → 0 and from Definition 2.6, we get

δJ(x; ξ) = 2

∫ b

a

x(t) ξ(t) dt,

for each ξ ∈ C1[a, b]. Hence, J is Gâteaux differentiable at each x ∈ C1[a, b].

Example 2.8 (Non-Existence of a Gâteaux Derivative). Consider the functional J(x) :=
∫ 1

0 |x(t)|dt. Clearly, J is defined on all C1[0, 1], for each continuous function x ∈ C1[0, 1]
results in a continuous integrand |x(t)|, whose integral is finite. For x0(t) := 0 and
ξ0(t) := t, we have,

J(x0 + ηξ0) =

∫ 1

0

|ηt| dt.

Therefore,
J(x0 + ηξ0)− J(x0)

η
=

{ 1
2 if η > 0

− 1
2 if η < 0,

and a Gâteaux derivative does not exist at x0 in the direction ξ0.

Observe that δJ(x; ξ) depends only on the local behavior of J near x. It can be un-
derstood as the generalization of the directional derivative of a real-value function in a
finite-dimensional Euclidean space IRnx . As is to be expected from its definition, the
Gâteaux derivative is a linear operation on the functional J (by the linearity of the ordinary
derivative):

δ(J1 + J2)(x; ξ) = δJ1(x; ξ) + δJ2(x; ξ),

for any two functionals J1, J2, whenever these variations exist. Moreover, for any real
scalar α, we have

δJ(x;αξ) = αδJ(x; ξ),

provided that any of these variations exist; in other words, δJ(x; ·) is an homogeneous
operator. However, since δJ(x; ·) is not additive2 in general, it may not define a linear
operator on X.

It should also be noted that the Gâteaux Derivative can be formed without consideration
of a norm (or distance) on X. That is, when non-vanishing, it precludes local minimum
(and maximum) behavior with respect to any norm:

2Indeed, the sum of two Gâteaux derivatives δJ(x; ξ1) + δJ(x; ξ2) need not be equal to the Gâteaux derivative
δJ(x; ξ1 + ξ2)



FREE PROBLEMS OF THE CALCULUS OF VARIATIONS 71

Lemma 2.9. Let J be a functional defined on a normed linear space (X, ‖ · ‖). Suppose
that J has a strictly negative variation δJ(x̄; ξ) < 0 at a point x̄ ∈ X in some direction
ξ ∈ X. Then, x̄ cannot be a local minimum point for J (in the sense of the norm ‖ · ‖).

Proof. Since δJ(x̄; ξ) < 0, from Definition 2.6,

∃δ > 0 such that
J(x̄ + ηξ)− J(x̄)

η
< 0, ∀η ∈ Bδ (0) .

Hence,
J(x̄ + ηξ) < J(x̄), ∀η ∈ (0, δ).

Since ‖(x̄ + ηξ) − x̄‖ = η‖ξ‖ → 0 as η → 0+, the points x̄ + ηξ are eventually in each
neighborhood of x̄, irrespective of the norm ‖ · ‖ considered on X. Thus, local minimum
behavior of J is not possible in the direction ξ at x̄ (see Definition 2.3, p. 66).

Remark 2.10. A direction ξ ∈ X such that δJ(x̄; ξ) < 0 defines a descent direction
for J at x̄. That is, the condition δJ(x̄; ξ) < 0 can be seen as a generalization of the
algebraic condition ∇f(x̄)

T
ξ, for ξ to be a descent direction at x̄ of a real-valued function

f : IRnx → IR (see Lemma 1.21, p. 10). By analogy, we shall define the following set:

F0(x̄) := {ξ ∈ X : δJ(x̄; ξ) < 0}.

Then, by Lemma 2.9, we have that F0(x̄) = ∅, if x̄ is a local minimizer of J on X.

Example 2.11 (Non-Minimum Point). Consider the problem to minimize the functional
J(x) :=

∫ b

a
[x(t)]2 dt for x ∈ C1[a, b], a < b. It was shown in Example 2.7, that J is defined

on all C1[a, b] and is Gâteaux differentiable at each x ∈ C1[a, b], with

δJ(x; ξ) = 2

∫ b

a

x(t) ξ(t) dt,

for each ξ ∈ C1[a, b].
Now, let x0(t) := t2 and ξ0(t) := − exp(t). Clearly, δJ(x0; ξ0) is non-vanishing and

negative in the direction ξ0. Thus, ξ0 defines a descent direction for J at x0, i.e., x0 cannot
be a local minimum point for J on C1[a, b] (endowed with any norm).

We now turn to the problem of minimizing a functional on a subset of a linear normed
linear space.

Definition 2.12 (D-Admissible Directions). Let J be a functional defined on a subset D of
a linear space X, and let x̄ ∈ D. Then, a direction ξ ∈ X, ξ 6= 0, is said to be D-admissible
at x̄ for J, if

(i) δJ(x̄; ξ) exists; and

(ii) x̄ + ηξ ∈ D for all sufficiently small η, i.e.,

∃δ > 0 such that x̄ + ηξ ∈ D, ∀η ∈ Bδ (0) .
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Observe, in particular, that if ξ is admissible at x̄, then so is each direction cξ, for c ∈ IR
(not necessarily a positive scalar).

For NLP problems of the form min{f(x) : x ∈ S ⊂ IRnx}, we saw in Chapter 1 that a
(local) geometric optimality condition is F0(x

?) ∩D(x?) = ∅ (see Theorem 1.31, p. 16).
The following theorem extends this characterization to optimization problems in normed
linear spaces, based on the concept of D-admissible directions.

Theorem 2.13 (Geometric Necessary Conditions for a Local Minimum). Let J be a
functional defined on a subset D of a normed linear space (X, ‖ · ‖). Suppose that x? ∈ D

is a local minimum point for J on D. Then

δJ(x?; ξ) = 0, for each D-admissible direction ξ at x?. (2.11)

Proof. By contradiction, suppose that there exists a D-admissible direction ξ such that
δJ(x?, ξ) < 0. Then, by Lemma 2.9, x? cannot be a local minimum for J. Likewise,
there cannot be a D-admissible direction ξ such that δJ(x?, ξ) > 0. Indeed, −ξ being
D-admissible and δJ(x?,−ξ) = −δJ(x?, ξ) < 0, by Lemma 2.9, x? cannot be a local
minimum otherwise. Overall, we must therefore have that δJ(x?, ξ) = 0 for each D-
admissible direction ξ at x?.

Our hope is that there will be “enough” admissible directions so that the condition
δJ(x?; ξ) = 0 can determinex?. There may be “too many” nontrivial admissible directions
to allow any x ∈ D to fulfill this condition; there may as well be just one such direction,
or even no admissible direction at all (see Example 2.41 on p. 90 for an illustration of this
latter possibility).

Observe also that the condition δJ(x?; ξ) = 0 alone cannot distinguish between a local
minimum and a local maximum point, nor can it distinguish between a local minimum and
a global minimum point. As in finite-dimensional optimization, we must also admit the
possibility of stationary points (such as saddle points), which satisfy this condition but are
neither local maximum points nor local minimum points (see Remark 1.23, p. 11). Further,
the Gâteaux derivative is a weak variation in the sense that minima and maxima obtained
via Theorem 2.13 are weak minima/maxima; that is, it does not distinguish between weak
and strong minima/maxima.

Despite these limitations, the condition δJ(x?; ξ) = 0 provides the most obvious ap-
proach to attacking problems of the calculus of variations (and also in optimal control
problems). We apply it to solve elementary problems of the calculus of variations in sub-
sections � 2.5.2. Then, Legendre second-order necessary condition is derived in � 2.5.3, and
a simple first-order sufficient condition is given in � 2.5.4. Finally, necessary conditions for
problems with free end-points are developed in � 2.5.5.

2.5.2 Euler’s Necessary Condition

In this section, we present a first-order necessary condition that must be satisfied for an arc
x(t), t1 ≤ t ≤ t2, to be a (weak) local minimum of a functional in the Lagrange form on
(C1[t1, t2])

nx , subject to the bound constraints x(t1) = x1 and x(t2) = x2. This problem
is know as the elementary problem of the calculus of variations.

Theorem 2.14 (Euler’s Necessary Conditions). Consider the problem to minimize the
functional

J(x) :=

∫ t2

t1

`(t,x(t), ẋ(t)) dt,
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on D := {x ∈ C1[t1, t2]
nx : x(t1) = x1,x(t2) = x2}, with ` : IR × IRnx × IRnx → IR a

continuously differentiable function. Suppose that x? gives a (local) minimum for J on D.
Then,

d
dt
`ẋi(t,x

?(t), ẋ?(t)) = `xi(t,x
?(t), ẋ?(t)), (2.12)

for each t ∈ [t1, t2], and each i = 1, . . . , nx.

Proof. Based on the differentiability properties of `, and by Theorem 2.A.59, we have

∂

∂η
J(x? + ηξ) =

∫ t2

t1

∂

∂η
`
(

t,x?(t) + ηξ(t), ẋ?(t) + ηξ̇(t)
)

dt

=

∫ t2

t1

(

`x [x? + ηξ]Tξ + `ẋ [x? + ηξ]Tξ̇
)

dt,

for each ξ ∈ C1[t1, t2]
nx , where the compressed notation `z[y] := `z(t,y(t), ẏ(t)) is used.

Taking the limit as η → 0, we get

δJ(x?; ξ) =

∫ t2

t1

(

`x [x?]
T
ξ + `ẋ [x?]

T
ξ̇
)

dt,

which is finite for each ξ ∈ C1[t1, t2]
nx , since the integrand is continuous on [t1, t2].

Therefore, the functional J is Gâteaux differentiable at each x ∈ C1[t1, t2]
nx .

Now, for fixed i = 1, . . . , nx, choose ξ = (ξ1, . . . , ξnx)
T ∈ C1[t1, t2]

nx such that ξj = 0
for all j 6= i, and ξi(t1) = ξi(t2) = 0. Clearly, ξ is D-admissible, since x? + ηξ ∈ D for
each η ∈ IR and the Gâteaux derivative δJ(x?; ξ) exists. Then, x? being a local minimizer
for J on D, by Theorem 2.13, we get

0 =

∫ t2

t1

(

`xi [x
?] ξi + `ẋi [x

?] ξ̇i

)

dt (2.13)

=

∫ t2

t1

`ẋi [x
?] ξ̇i dt+

∫ t2

t1

d
dt

[∫ t

t1

`xi [x
?] dτ

]

ξi dt (2.14)

=

∫ t2

t1

`ẋi [x
?] ξ̇i dt+

[

ξi

∫ t

t1

`xi [x
?] dτ

]t2

t1

−
∫ t2

t1

[∫ t

t1

`xi [x
?] dτ

]

ξ̇i dt (2.15)

=

∫ t2

t1

[

`ẋi [x
?]−

∫ t

t1

`xi [x
?] dτ

]

ξ̇i dt, (2.16)

and by Lemma 2.A.57,

`ẋi [x
?]−

∫ t

t1

`xi [x
?] dτ = Ci, ∀t ∈ [t1, t2], (2.17)

for some real scalar Ci. In particular, we have `ẋi [x?] ∈ C1[t1, t2], and differentiating
(2.17) with respect to t yields (2.12).

Definition 2.15 (Stationary Function). Each C1 function x̄ that satisfies the Euler equa-
tion (2.12) on some interval is called a stationary function for the Lagrangian `.

An old and rather entrenched tradition calls such functions extremal functions or simply
extremals, although they may provide neither a local minimum nor a local maximum for
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the problem; here, we shall employ the term extremal only for those functions which are
actual minima or maxima to a given problem. Observe also that stationary functions are not
required to satisfy any particular boundary conditions, even though we might be interested
only in those which meet given boundary conditions in a particular problem.

Example 2.16. Consider the functional

J(x) :=

∫ T

0

[ẋ(t)]2 dt,

for x ∈ D := {x ∈ C1[0, T ] : x(0) = 0, x(T ) = A}. Since the Lagrangian function is
independent of x, the Euler equation for this problem reads

ẍ(t) = 0.

Integrating this equation twice yields,

x(t) = c1t+ c2,

where c1 and c2 are constants of integration. These two constants are determined from
the end-point conditions of the problem as c1 = A

T
and c2 = 0. The resulting stationary

function is
x̄(t) := A

t

T
.

Note that nothing can be concluded as to whether x̄ gives a minimum, a maximum, or
neither of these, for J on D, based solely on Euler equation.

Remark 2.17 (First Integrals). Solutions to the Euler equation (2.12) can be obtained
more easily in the following three situations:

(i) The Lagrangian function ` does not depend on the independent variable t: ` =
`(x, ẋ). Defining the Hamiltonian as

H := `(x, ẋ)− ẋT`ẋ(x, ẋ),

we get

d
dt
H = `T

xẋ + `T
ẋẍ− ẍT`ẋ − ẋT d

dt
`ẋ = ẋT

(

`x −
d
dt
`ẋ

)

= 0.

Therefore,H is constant along a stationary trajectory. Note that for physical systems,
such invariants often provide energy conservation laws; for controlled systems, H
may correspond to a cost that depends on the trajectory, but not on the position onto
that trajectory.

(ii) The Lagrangian function ` does not depend on xi. Then,

d
dt
`ẋi(t, ẋ) = 0,

meaning that `ẋi is an invariant for the system. For physical systems, such invariants
typically provide momentum conservation laws.
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(iii) The Lagrangian function ` does not depend on ẋi. Then, the ith component of the
Euler equation becomes `xi = 0 along a stationary trajectory. Although this is a
degenerate case, we should try to reduce problems into this form systematically, for
this is also an easy case to solve.

Example 2.18 (Minimum Path Problem). Consider the problem to minimize the distance
between two fixed points, namely A = (xA, yA) and B = (xB , yB), in the (x, y)-plane.
That is, we want to find the curve y(x), xA ≤ x ≤ xB such that the functional J(y) :=
∫ xB

xA

√

1 + ẏ(x)2 dx is minimized, subject to the bound constraints y(xA) = yA and
y(xB) = xB . Since `(x, y, ẏ) =

√

1 + ẏ(x)2 does not depend on x and y, Euler equation
reduces to `ẏ = C, with C a constant. That is, ẏ(x) is constant along any stationary
trajectory and we have,

y(x) = C1x+ C2 =
yB − yA
xB − xA

x+
yAxB − yBxA
xB − xA

.

Quite expectedly, we get that the curve minimizing the distance between two points is a
straight line ,

2.5.3 Second-Order Necessary Conditions

In optimizing a twice continuously differentiable function f(x) in IRnx , it was shown in
Chapter 1 that if x? ∈ IRnx gives a (local) minimizer of f , then ∇f(x?) = 0 and ∇

2f(x?)
is positive semi-definite (see, e.g., Theorem 1.25, p. 12). That is, if x? provides a local
minimum, then f is both stationary and locally convex at x?.

Somewhat analogous conditions can be developed for free problems of the calculus of
variations. Their development relies on the concept of second variation of a functional:

Definition 2.19 (second Variation of a Functional). Let J be a functional defined on a
linear space X. Then, the second variation of J at x ∈ X in the direction ξ ∈ X is defined
as

δ2J(x; ξ) :=
∂2

∂η2
J(x + ηξ)

∣

∣

∣

∣

η=0

(provided it exists).

We are now ready to formulate the second-order necessary conditions:

Theorem 2.20 (Second-Order Necessary Conditions (Legendre)). Consider the problem
to minimize the functional

J(x) :=

∫ t2

t1

`(t,x(t), ẋ(t)) dt,

on D := {x ∈ C1[t1, t2]
nx : x(t1) = x1,x(t2) = x2}, with ` : IR × IRnx × IRnx → IR

a twice continuously differentiable function. Suppose that x? gives a (local) minimum for
J on D. Then x? satisfies the Euler equation (2.12) along with the so-called Legendre
condition,

`ẋẋ(t,x?(t), ẋ?(t)) semi-definite positive,
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for each t ∈ [t1, t2].

Proof. The conclusion that x? should satisfy the Euler equation (2.12) if it is a local mini-
mizer for J on D directly follows from Theorem 2.14.

Based on the differentiability properties of `, and by repeated application of Theo-
rem 2.A.59, we have

∂2

∂η2
J(x? + ηξ) =

∫ t2

t1

∂2

∂η2
` [x? + ηξ] dt

=

∫ t2

t1

(

ξT`xx [x? + ηξ] ξ + 2ξT`xẋ [x? + ηξ] ξ̇ + ξ̇
T
`ẋẋ [x? + ηξ] ξ̇

)

dt

for each ξ ∈ C1[t1, t2]
nx , with the usual compressed notation. Taking the limit as η → 0,

we get

δ2J(x?; ξ) =

∫ t2

t1

(

ξT`xx [x?] ξ + 2ξT`xẋ [x?] ξ̇ + ξ̇
T
`ẋẋ [x?] ξ̇

)

dt,

which is finite for each ξ ∈ C1[t1, t2]
nx , since the integrand is continuous on [t1, t2].

Therefore, the second variation of J at x? exists in any direction ξ ∈ C1[t1, t2]
nx (and so

does the first variation δJ(x?; ξ)).
Now, let ξ ∈ C1[t1, t2]

nx such that ξ(t1) = ξ(t2) = 0. Clearly, ξ is D-admissible, since
x? + ηξ ∈ D for each η ∈ IR and the Gâteaux derivative δJ(x?; ξ) exists. Consider the
function f : IR → IR be defined as

f(η) := J(x? + ηξ).

We have, ∇f(0) = δJ(x?; ξ) and ∇2f(0) = δ2J(x?; ξ). Moreover, x? being a local
minimizer of J on D, we must have that η? = 0 is a local (unconstrained) minimizer of f .
Therefore, by Theorem 1.25, ∇f(0) = 0 and ∇2f(0) ≥ 0. This latter condition makes it
necessary that δ2J(x?; ξ) be nonnegative:

0 ≤
∫ t2

t1

(

ξT`xx [x?] ξ + 2ξT`xẋ [x?] ξ̇ + ξ̇
T
`ẋẋ [x?] ξ̇

)

dt

=

∫ t2

t1

(

ξT`xx [x?] ξ − ξT d
dt
`xẋ [x?] ξ + ξ̇

T
`ẋẋ [x?] ξ̇

)

dt+

[

ξT d
dt
`xẋ [x?] ξ

]t2

t1

=

∫ t2

t1

[

ξT
(

`xx [x?]− d
dt
`xẋ [x?]

)

ξ + ξ̇
T
`ẋẋ [x?] ξ̇

)

dt. (2.18)

Finally, by Lemma 2.A.58, a necessary condition for (2.18) to be nonnegative is that
`ẋẋ (t,x?(t), ẋ?(t)) be nonnegative, for each t ∈ [t1, t2].

Notice the strong link regarding first- and second-order necessary conditions of optimal-
ity between unconstrained NLP problems and free problems of the calculus of variations. It
is therefore tempting to try to extend second-order sufficient conditions for unconstrained
NLPs to variational problems. By Theorem 1.28 (p. 12), x? is a strict local minimum
of the problem to minimize a twice-differentiable function f on IRnx , provided that f is
both stationary and locally strictly convex at x?. Unfortunately, the requirements that (i)
x̄ be a stationary function for `, and (ii) `(t,y, z) be strictly convex with respect to z, are
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not sufficient for x̄ to be a (weak) local minimum of a free problem of the the calculus of
variations. Additional conditions must hold, such as the absence of points conjugate to the
point t1 in [t1, t2] (Jacobi’s sufficient condition). However, these considerations fall out of
the scope of an introductory class on the calculus of variations (see also � 2.8).

Example 2.21. Consider the same functional as in Example 2.16, namely,

J(x) :=

∫ T

0

[ẋ(t)]2 dt,

for x ∈ D := {x ∈ C1[0, T ] : x(0) = 0, x(T ) = A}. It was shown that the unique
stationary function relative to J on D is given by

x̄(t) := A
t

T
.

Here, the Lagrangian function is `(t, y, z) := z2, and we have that

`zz(t, x̄(t), ˙̄x(t)) = 2,

for each 0 ≤ t ≤ T . By Theorem 2.20 above, x̄ is therefore a candidate local minimizer
for J on D, but it cannot be a local maximizer.

2.5.4 Sufficient Conditions: Joint Convexity

The following sufficient condition for an extremal solution to be a global minimum extends
the well-known convexity condition in finite-dimensional optimization, as given by Theo-
rem 1.18 (p. 9). It should be noted, however, that this condition is somewhat restrictive and
is rarely satisfied in most practical applications.

Theorem 2.22 (Sufficient Conditions). Consider the problem to minimize the functional

J(x) :=

∫ t2

t1

`(t,x(t), ẋ(t)) dt,

on D := {x ∈ C1[t1, t2]
nx : x(t1) = x1,x(t2) = x2}. Suppose that the Lagrangian

`(t,y, z) is continuously differentiable and [strictly] jointly convex in (y, z). Ifx? stationary
function for the Lagrangian `, then x? is also a [strict] global minimizer for J on D.

Proof. The integrand `(t,y, z) being continuously differentiable and jointly convex in
(y, z), we have for an arbitrary D-admissible trajectory x:
∫ t2

t1

`[x]− `[x?] dt ≥
∫ t2

t1

(x− x?)
T
`x[x?] + (ẋ− ẋ?)

T
`ẋ[x?] dt (2.19)

≥
∫ t2

t1

(x− x?)T
(

`x[x?]− d
dt
`ẋ[x?]

)

dt+
[

(x − x?)T`ẋ[x?]
]t2

t1
,

with the usual compressed notation. Clearly, the first term is equal to zero, for x? is a
solution to the Euler equation (2.12); and the second term is also equal to zero, since x is
D-admissible, i.e., x(t1) = x?(t1) = x1 and x(t2) = x?(t2) = x2. Therefore,

J(x) ≥ J(x?)
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for each admissible trajectory. (A proof that strict joint convexity of ` in (y, z) is sufficient
for a strict global minimizer is obtained upon replacing (2.19) by a strict inequality.)

Example 2.23. Consider the same functional as in Example 2.16, namely,

J(x) :=

∫ T

0

[ẋ(t)]2 dt,

for x ∈ D := {x ∈ C1[0, T ] : x(0) = 0, x(T ) = A}. Since the Lagrangian `(t, y, z) does
not depend depend on y and is convex in z, by Theorem 2.22, every stationary function for
the Lagrangian gives a global minimum for J on D. But since x̄(t) := A t

T
is the unique

stationary function for `, then x̄(t) is a global minimizer for J on D.

2.5.5 Problems with Free End-Points

So far, we have only considered those problems with fixed end-points t1 and t2, and fixed
bound constraints x(t1) = x1 and x(t2) = x2. Yet, many problems of the calculus of
variations do not fall into this category.

In this subsection, we shall consider problems having a free end-point t2 and no constraint
on x(t2). Instead of specifying t2 and x(t2), we add a terminal cost (also called salvage
term) to the objective function, so that the problem is now in Bolza form:

min
x,t2

∫ t2

t1

`(t,x, ẋ)dt+ φ(t2,x(t2)), (2.20)

on D := {(x, t2) ∈ C1[t1, T ]nx × (t1, T ) : x(t1) = x1}. Other end-point problems, such
as constraining either of the end-points to be on a specified curve, shall be considered later
in � 2.7.3.

To characterize the proper boundary condition at the right end-point, more general vari-
ations must be considered. In this objective, we suppose that the functions x(t) are defined
by extension on a fixed “sufficiently” large interval [t1, T ], and introduce the linear space
C1[t1, T ]nx× IR, supplied with the (weak) norm ‖(x, t)‖1,∞ := ‖x‖1,∞+ |t|. In particular,
the geometric optimality conditions given in Theorem 2.13 can be used in the normed linear
space (C1[t1, T ]nx × IR, ‖(·, ·)‖1,∞), with the Gâteaux derivative defined as:

δJ(x, t2; ξ, τ) := lim
η→0

J(x + ηξ, t2 + ητ)− J(x)

η
=

∂

∂η
J(x + ηξ, t2 + ητ)

∣

∣

∣

∣

η=0

.

The idea is to derive stationarity conditions for J with respect to both x and the additional
variable t2. These conditions are established in the following:

Theorem 2.24 (Free Terminal Conditions Subject to a Terminal Cost). Consider the
problem to minimize the functional J(x, t2) :=

∫ t2

t1
`(t,x(t), ẋ(t))dt + φ(t2,x(t2)), on

D := {(x, t2) ∈ C1[t1, T ]nx× (t1, T ) : x(t1) = x1}, with ` : IR× IRnx × IRnx → IR, and
φ : IR× IRnx → IR being continuously differentiable. Suppose that (x?, t?2) gives a (local)
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minimum for J on D. Then, x? is the solution to the Euler equation (2.12) on the interval
[t1, t

?
2], and satisfies both the initial condition x?(t1) = x1 and the transversal conditions

[`ẋ + φx]x=x?,t=t?
2

= 0 (2.21)
[

`− ẋT`ẋ + φt

]

x=x?,t=t?
2

= 0. (2.22)

Proof. By fixing t2 = t?2 and varying x? in the D-admissible direction ξ ∈ C1[t1, T ]nx

such that ξ(t1) = ξ(t?2) = 0, it can be shown, as in the proof of Theorem 2.14, that x?

must be a solution to the Euler equation (2.12) on [t1, t
?
2].

Based on the differentiability assumptions for ` and φ, and by Theorem 2.A.60, we have

∂

∂η
J(x? + ηξ, t?2 + ητ) =

∫ t?2+ητ

t1

∂

∂η
` [(x? + ηξ)(t)] dt+ ` [(x? + ηξ)(t?2 + ητ)] τ

+
∂

∂η
φ [(x? + ηξ)(t?2 + ητ)]

=

∫ t?2+ητ

t1

`x [(x? + ηξ)(t)]
T
ξ + `ẋ [(x? + ηξ)(t)]

T
ξ̇ dt

+ ` [(x? + ηξ)(t?2 + ητ)] τ + φt [(x
? + ηξ)(t?2 + ητ)] τ

+ φx [(x? + ηξ)(t?2 + ητ)]
T
(

ξ(t?2 + ητ) + (ẋ + ηξ̇)(t?2 + ητ)τ
)

,

where the usual compressed notation is used. Taking the limit as η → 0, we get

δJ(x?, t?2; ξ, τ) =

∫ t?2

t1

`x [x?]
T
ξ + `ẋ [x?]

T
ξ̇ dt+ ` [x?(t?2)] τ + φt [x

?(t?2)] τ

+ φx [x?(t?2)]
T (ξ(t?2) + ẋ(t?2)τ) ,

which exists for each (ξ, τ) ∈ C1[t1, T ]nx × IR. Hence, the functional J is Gâteaux
differentiable at (x?, t?2). Moreover, x? satisfying the Euler equation (2.12) on [t1, t

?
2], we

have that `ẋ[x?] ∈ C1[t1, t
?
2]
nx , and

δJ(x?, t?2; ξ, τ) =

∫ t?2

t1

(

`x [x?]− d
dt
`ẋ [x?]

)T

ξ dt+ `ẋ [x?(t?2)]
T
ξ(t?2)

+ ` [x?(t?2)] τ + φt [x
?(t?2)] τ + φx [x?(t?2)]

T
(ξ(t?2) + ẋ(t?2)τ)

=
(

φt [x
?(t?2)] + ` [x?(t?2)]− `ẋ [x?(t?2)]

T
ẋ(t?2)

)

τ

+ (`ẋ [x?(t?2)] + φx [x?(t?2)])
T
(ξ(t?2) + ẋ(t?2)τ) .

By Theorem 2.13, a necessary condition of optimality is

(φt [x
?(t?2)] + ` [x?(t?2)]− `ẋ [x?(t?2)]

Tẋ(t?2)
)

τ

+ (`ẋ [x?(t?2)] + φx [x?(t?2)])
T
(ξ(t?2) + ẋ(t?2)τ) = 0,

for each D-admissible direction (ξ, τ) ∈ C1[t1, T ]nx × IR.
In particular, restricting attention to those D-admissible directions (ξ, τ) ∈ Ξ :=

{(ξ, τ) ∈ C1[t1, T ]nx × IR : ξ(t1) = 0, ξ(t?2) = −ẋ(t?2)τ}, we get

0 =
(

φt [x
?(t?2)] + ` [x?(t?2)]− `ẋ [x?(t?2)]

T
ẋ(t?2)

)

τ,
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for every τ sufficiently small. Analogously, for each i = 1, . . . , nx, considering variation
those D-admissible directions (ξ, τ) ∈ Ξ := {(ξ, τ) ∈ C1[t1, T ]nx× IR : ξj 6=i(t) = 0 ∀t ∈
[t1, t2], ξi(t1) = 0, τ = 0}, we get

0 = (`ẋi [x
?
i (t

?
2)] + φxi [x?i (t

?
2)]) ξi(t

?
2),

for every ξi(t?2) sufficiently small. The result follows by dividing the last two equations by
τ and ξi(t?2), respectively.

Remark 2.25 (Natural Boundary Conditions). Problems wherein t2 is left totally free can
also be handled with the foregoing theorem, e.g., by setting the terminal cost to zero. Then,
the transversal conditions (2.21,2.22) yield the so-called natural boundary conditions:

◦ If t2 is free,
[

`− ẋT`ẋ

]

x=x?,t=t?
2

= H(t2,x
?(t2), ẋ

?(t2)) = 0;

◦ If x(t2) is free,
[`ẋ]x=x?,t=t?

2
= 0.

A summary of the necessary conditions of optimality encountered so far is given below.

Remark 2.26 (Summary of Necessary Conditions). Necessary conditions of optimality
for the problem

minimize:
∫ t2

t1

`(t,x(t), ẋ(t))dt+ φ(t2,x(t2))

subject to: (x, t2) ∈ D := {(x, t2) ∈ C1[t1, t2]
nx × [t1, T ] : x(t1) = x1},

are as follow:

◦ Euler Equation:
d
dt
`ẋ = `x, t1 ≤ t ≤ t2;

◦ Legendre Condition:

`ẋẋ semi-definite positive, t1 ≤ t ≤ t2;

◦ End-Point Conditions:

x(t1) = x1

If t2 is fixed, t2 given
If x(t2) is fixed, x(t2) = x2 given;

◦ Transversal Conditions:

If t2 is free,
[

`− ẋT`ẋ + φt

]

t2
= 0

If x(t2) is free, [`ẋ + φx]t2 = 0.

(Analogous conditions hold in the case where either t1 or x(t1) is free.)
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Example 2.27. Consider the functional

J(x) :=

∫ T

0

[ẋ(t)]2 dt+W [x(T )−A]2,

for x ∈ D := {x ∈ C1[0, T ] : x(0) = 0, T given}. The stationary function x̄(t) for the
Lagrangian ` is unique and identical to that found in Example 2.16,

x̄(t) := c1t+ c2,

where c1 and c2 are constants of integration. Using the supplied end-point condition x̄(0) =
0, we get c2 = 0. Unlike Example 2.16, however, c1 cannot be determined directly, for
x̄(T ) is given implicitly through the transversal condition (2.21) at t = T ,

2 ˙̄x(T ) + 2W [x̄(T )−A] = 0.

Hence,

c1 =
AW

1 + TW
.

Overall, the unique stationary function x̄ is thus given by

x̄(t) =
AW

1 + TW
t.

By letting the coefficient W grow large, more weight is put on the terminal term than on
the integral term, which makes the end-point value x̄(T ) closer to the valueA. At the limit
W → ∞, we get x̄(t) → A

T
t, which is precisely the stationary function found earlier in

Example 2.16 (without terminal term and with end-point condition x(T ) = A).

2.6 PIECEWISE C1 EXTREMAL FUNCTIONS

In all the problems examined so far, the functions defining the class for optimization were
required to be continuously differentiable, x ∈ C1[t1, t2]

nx . Yet, it is natural to wonder
whether cornered trajectories, i.e., trajectories represented by piecewise continously dif-
ferentiable functions, might not yield improved results. Besides improvement, it is also
natural to wonder whether those problems of the calculus of variations which do not have
extremals in the class of C1 functions actually have extremals in the larger class of piecewise
C1 functions.

In the present section, we shall extend our previous investigations to include piecewise
C1 functions as possible extremals. In � 2.6.1, we start by defining the class of piecewise
C1 functions, and discuss a number of related properties. Then, piecewise C1 extremals
for problems of the calculus of variations are considered in � 2.6.2, with emphasis on the
so-called Weierstrass-Erdmann conditions which must hold at a corner point of an extremal
solution. Finally, the characterization of strong extremals is addressed in � 2.6.3, based on
a new class of piecewise C1 (strong) variations.
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2.6.1 The Class of Piecewise C1 Functions

The class of piecewise C1 functions is defined as follows:

Definition 2.28 (Piecewise C1 Functions). A real-valued function x̂ ∈ C [a, b] is said to
be piecewise C1, denoted x̂ ∈ Ĉ1[a, b], if there is a finite (irreducible) partition a = c0 <
c1 < · · · < cN+1 = b such that x̂ may be regarded as a function in C1[ck, ck+1] for each
k = 0, 1, . . . , N . When present, the interior points c1, . . . , cN are called corner points of
x.

PSfrag replacements

t

x(t)

a c1 ck cN b

x̂

x

˙̂x

Figure 2.3. Illustration of a piecewise continuously differentiable function x̂ ∈ Ĉ1[a, b] (thick red
line), and its derivative ˙̂x (dash-dotted red line); without corners, x̂ may resemble the continuously
differentiable function x ∈ C1[a, b] (dashed blue curve).

Some remarks are in order. Observe first that, when there are no corners, then x̂ ∈
C1[a, b]. Further, for any x̂ ∈ Ĉ1[a, b], ˙̂x is defined and continuous on [a, b], except at its
corner point c1, . . . , cN where it has distinct limiting values ˙̂x(c±k ); such discontinuities
are said to simple, and ˙̂x is said to be piecewise continuous on [a, b], denoted ˙̂x ∈ Ĉ [a, b].
Fig. 2.3. illustrates the effect of the discontinuities of ˙̂x in producing corners on the graph
of x̂. Without these corners, x̂ might resemble the C1 function x, whose graph is presented
for comparison. In particular, each piecewise C1 function is “almost” C1, in the sense that
it is only necessary to round out the corners to produce the graph of a C1 function. These
considerations are formalized by the following:

Lemma 2.29 (Smoothing of Piecewise C1 Functions). Let x̂ ∈ Ĉ1[a, b]. Then, for each
δ > 0, there exists x ∈ C1[a, b] such that x ≡ x̂, except in a neighborhood Bδ (ck) of each
corner point of x̂. Moreover, ‖x− x̂‖∞ ≤ Âδ, where Â is a constant determined by x̂.

Proof. See, e.g., [55, Lemma 7.2] for a proof.

Likewise, we shall consider the class Ĉ1[a, b]nx of nx-dimensional vector valued
analogue of Ĉ1[a, b], consisting of those functions x̂ ∈ Ĉ1[a, b]nx with components
x̂j ∈ Ĉ1[a, b], j = 1, . . . , nx. The corners of such x̂ are by definition those of any one of
its components x̂j . Note that the above lemma can be applied to each component of a given
x̂, and shows that x̂ can be approximated by a x ∈ C1[a, b]nx which agrees with it except
in prescribed neighborhoods of its corner points.

Both real valued and real vector valued classes of piecewise C1 functions form linear
spaces of which the subsets of C1 functions are subspaces. Indeed, it is obvious that the
constant multiple of one of these functions is another of the same kind, and the sum of two
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such functions exhibits the piecewise continuous differentiability with respect to a suitable
partition of the underlying interval [a, b].

Since Ĉ1[a, b] ⊂ C [a, b],
‖y‖∞ := max

a≤t≤b
|y(t)|,

defines a norm on Ĉ1[a, b]. Moreover,

‖y‖1,∞ := max
a≤t≤b

|y(t)|+ sup
t∈S

N
k=0

(ck,ck+1)

|ẏ(t)|,

can be shown to be another norm on Ĉ1[a, b], with a = c0 < c1 < · · · < cN < cN+1 =
b being a suitable partition for x̂. (The space of vector valued piecewise C1 functions
Ĉ1[a, b]nx can also be endowed with the norms ‖ · ‖∞ and ‖ · ‖1,∞.)

By analogy to the linear space of C1 functions, the maximum norms ‖ · ‖∞ and ‖ · ‖1,∞
are referred to as the strong norm and the weak norm, respectively; the functions which
are locally extremal with respect to the former [latter] norm are said to be strong [weak]
extremal functions.

2.6.2 The Weierstrass-Erdmann Corner Conditions

A natural question that arises when considering the class of piecewise C1 functions is
whether a (local) extremal point for a functional in the class of C1 functions also gives a
(local) extremal point for this functional in the larger class of piecewise C1 functions:

Theorem 2.30 (Piecewise C1 Extremals vs. C1 Extremals). If x? gives a [local] extremal
point for the functional

J(x) :=

∫ t2

t1

`(t,x(t), ẋ(t)) dt

on D := {x ∈ C1[t1, t2]
nx : x(t1) = x1,x(t2) = x2}, with ` ∈ C([t1, t2] × IR2nx),

then x? also gives a [local] extremal point for J on D̂ := {x̂ ∈ Ĉ1[t1, t2]
nx : x̂(t1) =

x1, x̂(t2) = x2}, with respect to the same ‖ · ‖∞ or ‖ · ‖1,∞ norm.

Proof. See, e.g., [55, Theorem 7.7] for a proof.

On the other hand, a functional J may not have C1 extremals, but be extremized by a
piecewise C1 function. Analogous to the developments in � 2.5, we shall first seek for weak
(local) extremals x̂? ∈ Ĉ1[t1, t2]

nx , i.e., extremal trajectories with respect to some weak
neighborhood B

1,∞
δ (x̂?).

◦ Observe that x̂ ∈ B
1,∞
δ (x̂?) if and only if x̂ = x̂? + ηξ̂ for ξ̂ ∈ Ĉ1[t1, t2]

nx , and a
sufficiently small η. In characterizing (weak) local extremals for the functional

J(x̂) :=

∫ t2

t1

`(t, x̂(t), ˙̂x(t)) dt

on D̂ := {x̂ ∈ Ĉ1[t1, t2]
nx : x̂(t1) = x1, x̂(t2) = x2}, where ` and its partials `x, `ẋ

are continuous on [t1, t2]× IR2nx , one can therefore duplicate the analysis of � 2.5.2.
This is done by splitting the integral into a finite sum of integrals with continuously
differentiable integrands, then differentiating each under the integral sign. Overall,
it can be shown that a (weak, local) extremal x̂? ∈ Ĉ1[t1, t2]

nx must be stationary in
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intervals excluding corner points, i.e., the Euler equation (2.12) is satisfied on [t1, t2]
except at corner points c1, . . . , cN of x̂?.

◦ Likewise, both Legendre second-order necessary conditions ( � 2.5.3) and convexity
sufficient conditions ( � 2.5.4) can be shown to hold on intervals excluding corners
points of a piecewise C1 extremal.

◦ Finally, transversal conditions corresponding to the various free end-point problems
considered in � 2.5.5 remain the same. To see this most easily, e.g., in the case where
freedom is permitted only at the right end-point, suppose that x̂? ∈ Ĉ1[t1, t2]

nx

gives a local extremal for D̂, and let cN be the right-most corner point of x̂?. Then,
restricting comparison to those competing x̂ having their right-most corner point at
cN and satisfying x̂(cN ) = x̂?(cN ), it is seen that the corresponding directions (ξ̂, τ)
must utilize the end-point freedom exactly as in � 2.5.5. Thus, the resulting boundary
conditions are identical to (2.21) and (2.22).

Besides necessary conditions of optimality on intervals excluding corner points
c1, . . . , cN of a local extremal x̂? ∈ Ĉ1[t1, t2]

nx , the discontinuities of ˙̂x
?

which are per-
mitted at each ck are restricted. The so-called first Weierstrass-Erdmann corner condition
are given subsequently.

Theorem 2.31 (First Weierstrass-Erdmann Corner Condition). Let x̂?(t) be a (weak)
local extremal of the problem to minimize the functional

J(x̂) :=

∫ t2

t1

`(t, x̂(t), ˙̂x(t)) dt

on D̂ := {x̂ ∈ Ĉ1[t1, t2]
nx : x̂(t1) = x1, x̂(t2) = x2}, where ` and its partials `x, `ẋ are

continuous on [t1, t2]× IR2nx . Then, at every (possible) corner point c ∈ (t1, t2) of x̂?, we
have

`ẋ

(

c, x̂?(c), ˙̂x
?
(c−)

)

= `ẋ

(

c, x̂?(c), ˙̂x
?
(c+)

)

, (2.23)

where ˙̂x
?
(c−) and ˙̂x

?
(c+) denote the left and right time derivative of x̂? at c, respectively.

Proof. By Euler equation (2.12), we have

`ẋi(t, x̂
?(t), ˙̂x

?
(t)) =

∫ t

t1

`xi(τ, x̂
?(τ), ˙̂x

?
(τ)) + C i = 1, . . . , nx,

for some real constant C. Therefore, the function defined by φ(t) := `ẋi(t, x̂
?(t), ˙̂x

?
(t))

is continuous at each t ∈ (t1, t2), even though ˙̂x
?
(t)) may be discontinuous at that point;

that is, φ(c−) = φ(c+). Moreover, `ẋi being continuous in its 1 + 2nx arguments, x̂?(t)
being continuous at c, and ˙̂x

?
(t) having finite limits ˙̂x

?
(c±) at c, we get

`ẋi

(

c, x̂?(c), ˙̂x
?
(c−)

)

= `ẋi

(

c, x̂?(c), ˙̂x
?
(c+)

)

,

for each i = 1, . . . , nx.

Remark 2.32. The first Weierstrass-Erdmann condition (2.23) shows that the disconti-
nuities of ˙̂x

?
which are permitted at corner points of a local extremal trajectory x̂? ∈
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Ĉ1[t1, t2]
nx are those which preserve the continuity of `ẋ. Likewise, it can be shown that

the continuity of the Hamiltonian functionH := `− ẋ`ẋ must be preserved at corner points
of x̂?,

`
[

x̂?(c−)
]

− ˙̂x
?
(c−)`ẋ

[

x̂?(c−)
]

= `
[

x̂?(c+)
]

− ˙̂x
?
(c+)`ẋ

[

x̂?(c+)
]

(2.24)

(using compressed notation), which yields the so-called second Weierstrass-Erdmann cor-
ner condition.

Example 2.33. Consider the problem to minimize the functional

J(x) :=

∫ 1

−1

x(t)2(1− ẋ(t))2 dt,

on D := {x ∈ C1[−1, 1] : x(−1) = 0, x(1) = 1}. Noting that the Lagrangian `(y, z) :=
y2(1− z)2 is independent of t, we have

H := `(x, ẋ)− ẋ`ẋ(x, ẋ) = x(t)2(1− ẋ(t))2− ẋ(t)[2x(t)2(ẋ(t)−1)] = c ∀t ∈ [−1, 1],

for some constant c. Upon simplification, we get

x(t)2(1− ẋ(t)2) = c ∀t ∈ [−1, 1].

With the substitution u(t) := x(t)2 (so that u̇(t) := 2x(t)ẋ(t)), we obtain the new equation
u̇(t)2 = 4(u(t)− c), which has general solution

u(t) := (t+ k)2 + c,

where k is a constant of integration. In turn, a stationary solution x̄ ∈ C1[−1, 1] for the
Lagrangian ` satisfies the equation

x̄(t)2 = (t+ k)2 + c.

In particular, the boundary conditions x(−1) = 0 and x(1) = 1 produce constants c =
−( 3

4 )2 and k = 1
4 . however, the resulting stationary function,

x̄(t) =

√

(

t+
1

4

)2

−
(

3

4

)2

=

√

(t+ 1)

(

t− 1

2

)

is defined only for t ≥ 1
2 of t ≤ −1. Thus, there is no stationary function for the Lagrangian

` in D.
Next, we turn to the problem of minimizing J in the larger set D̂ := {x̂ ∈ Ĉ1[−1, 1] :

x̂(−1) = 0, x̂(1) = 1}. Suppose that x̂? is a local minimizer for J on D̂. Then, by the
Weierstrass-Erdmann condition (2.23), we must have

−2x̂?(c−)
[

1− ˙̂x
?
(c−)

]

= −2x̂?(c+)
[

1− ˙̂x
?
(c+)

]

,

and since x̂? is continuous,

x̂?(c)
[

˙̂x
?
(c+)− ˙̂x

?
(c−)

]

= 0.
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But because ˙̂x
?
(c+) 6= ˙̂x

?
(c−) at a corner point, such corners are only allowed at those

c ∈ (−1, 1) such that x̂?(c) = 0.
Observe that the cost functional is bounded below by 0, which is attained if either

x̂?(t) = 0 or ˙̂x
?
(t) = 1 at each t in [−1, 1]. Since x̂?(1) = 1, we must have that ˙̂x

?
(t) = 1

in the largest subinterval (c, 1] in which x̂?(t) > 0; here, this interval must continue until
c = 0, where x̂?(0) = 0, since corner points are not allowed unless x̂?(c) = 0. Finally,
the only function in Ĉ1[−1, 0], which vanishes at −1 and 0, and increases at each nonzero
value, is x̂ ≡ 0. Overall, we have shown that the piecewise C1 function

x̂?(t) =

{

0, −1 ≤ t ≤ 0
t, 0 < t ≤ 1

is the unique global minimum point for J on D̂.

Corollary 2.34 (Absence of Corner Points). Consider the problem to minimize the func-
tional

J(x̂) :=

∫ t2

t1

`(t, x̂(t), ˙̂x(t))dt

on D̂ := {x̂ ∈ Ĉ1[t1, t2]
nx : x̂(t1) = x1, x̂(t2) = x2}. If `ẋ(t,y, z) is a strictly monotone

function of z ∈ IRnx (or, equivalently, `(t,y, z) is a convex function in z on IRnx), for each
(t,y) ∈ [t1, t2]× IRnx , then an extremal solution x̂?(t) cannot have corner points.

Proof. Let x̂? by an extremal solution of J on D̂. By contradiction, assume that x̂? has
a corner point at c ∈ (t1, t2). Then, we have ˙̂x

?
(c−) 6= ˙̂x

?
(c+) and, `ẋ being a strictly

monotone function of ˙̂x,

`ẋ

(

c, x̂?(c), ˙̂x
?
(c−)

)

6= `ẋ

(

c, x̂?(c), ˙̂x
?
(c+)

)

(since `ẋ cannot take twice the same value). This contradicts the condition (2.23) given by
Theorem 2.31 above, i.e., x̂? cannot have a corner point in (t1, t2).

Example 2.35 (Minimum Path Problem (cont’d)). Consider the problem to minimize
the distance between two fixed points, namely A = (xA, yA) and B = (xB , yB), in the
(x, y)-plane. We have shown, in Example 2.18 (p. 75), that extremal trajectories for this
problem correspond to straight lines. But could we have extremal trajectories with corner
points? The answer is no, for `ẋ : z 7→ 1√

1+z2
is a convex function in z on IR.

2.6.3 Weierstrass’ Necessary Conditions: Strong Minima

The Gâteaux derivatives of a functional are obtained by comparing its value at a point x
with those at points x + ηξ in a weak norm neighborhood. In contrast to these (weak)
variations, we now consider a new type of (strong) variations whose smallness does not
imply that of their derivatives.
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Specifically, the variation Ŵ ∈ Ĉ1[t1, t2] is defined as:

Ŵ (t) :=







v(t− τ + δ) if τ − δ ≤ t < τ

v(−
√
δ(t− τ) + δ) if τ ≤ t < τ +

√
δ

0 otherwise.
,

where τ ∈ (t1, t2), v > 0, and δ > 0 such that

τ − δ > t1 and τ +
√
δ < t2.

Both Ŵ (t) and its time derivative are illustrated in Fig. 2.4. below. Similarly, variations
Ŵ can be defined in Ĉ1[t1, t2]

nx .
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Figure 2.4. Strong variation Ŵ (t) (left plot) and its time derivative ˙̂
W (t) (right plot).

The following theorem gives a necessary condition for a strong local minimum, whose
proof is based on the foregoing class of variations.

Theorem 2.36 (Weierstrass’ Necessary Condition). Consider the problem to minimize
the functional

J(x̂) :=

∫ t2

t1

`(t, x̂(t), ˙̂x(t))dt,

on D̂ := {x̂ ∈ Ĉ1[t1, t2]
nx : x̂(t1) = x1, x̂(t2) = x2}. Suppose x̂?(t), t1 ≤ t ≤ t2, gives

a strong (local) minimum for J on D̂. Then,

E (t, x̂?, ˙̂x
?
,v) := `(t, x̂?, ˙̂x

?
+ v)− `(t, x̂?, ˙̂x?)− vT` ˙̂x(t, x̂?, ˙̂x

?
) ≥ 0, (2.25)

at every t ∈ [t1, t2] and for each v ∈ IRnx . (E is referred to as the excess function of
Weierstrass.)

Proof. For the sake of clarity, we shall present and prove this condition for scalar functions
x̂ ∈ Ĉ1[t1, t2] only. Its extension to vector functions x̂ ∈ Ĉ1[t1, t2]

nx poses no particular
conceptual difficulty, and is left to the reader as an exercise ,.

Let x̂δ(t) := x̂?(t) + Ŵ (t). Note that both Ŵ and x̂? being piecewise C1 functions, so
is x̂δ . These smoothness conditions are sufficient to calculate J(x̂δ), as well as its derivative
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with respect to δ at δ = 0. By the definition of Ŵ , we have

J(x̂δ) = J(x̂?)−
∫ τ+

√
δ

τ−δ
`
(

t, x̂?(t), ˙̂x
?
(t)
)

dt

+

∫ τ

τ−δ
`
(

t, x̂?(t) + v(t− τ + δ), ˙̂x
?
(t) + v

)

dt

+

∫ τ+
√
δ

τ

`
(

t, x̂?(t) + v(−
√
δ(t− τ) + δ), ˙̂x

?
(t)− v

√
δ
)

dt.

That is,

J(x̂δ)− J(x̂?)

δ
=

1

δ

∫ τ

τ−δ
`
(

t, x̂?(t) + v(t− τ + δ), ˙̂x
?
(t) + v

)

− `
(

t, x̂?(t), ˙̂x
?
(t)
)

dt

+
1

δ

∫ τ+
√
δ

τ

`
(

t, x̂?(t) + v(−
√
δ(t− τ) + δ), ˙̂x

?
(t)− v

√
δ
)

− `
(

t, x̂?(t), ˙̂x
?
(t)
)

dt.

Letting δ → 0, the first term Iδ1 tends to

I0
1 := lim

δ→0
Iδ1 = `

(

τ, x̂?(τ), ˙̂x
?
(τ) + v

)

− `
(

τ, x̂?(τ), ˙̂x
?
(τ)
)

.

Letting g be the function such that g(t) := v(−(t− τ) +
√
δ), the second term Iδ2 becomes

Iδ2 =
1

δ

∫ τ+
√
δ

τ

`
(

t, x̂?(t) +
√
δg(t), ˙̂x

?
(t) +

√
δġ(t)

)

− `
(

t, x̂?(t), ˙̂x
?
(t)
)

dt

=
1

δ

∫ τ+
√
δ

τ

`?x
√
δg + `?ẋ

√
δġ + o(

√
δ) dt

=
1√
δ

∫ τ+
√
δ

τ

`?xg + `?ẋġ dt+ o(
√
δ)

=
1√
δ

∫ τ+
√
δ

τ

(

`?x −
d
dt
`?ẋ

)

g dt+ [`?ẋg]
τ+

√
δ

τ + o(
√
δ).

Noting that g(τ +
√
δ) = 0 and g(τ) = −v

√
δ, and because x̂? verifies the Euler equation

since it is a (local) minimizer for J on D̂, we get

I0
2 := lim

δ→0
Iδ2 = −v`?ẋ

(

τ, x̂?(τ), ˙̂x
?
(τ)
)

.

Finally, x̂? being a strong (local) minimizer for J on D̂, we have J(x̂δ) ≥ J(x̂?) for
sufficiently small δ, hence

0 ≤ lim
δ→0

J(x̂δ)− J(x̂?)

δ
= I0

1 + I0
2 ,

and the result follows.
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Example 2.37 (Minimum Path Problem (cont’d)). Consider again the problem to min-
imize the distance between two fixed points A = (xA, yA) and B = (xB , yB), in the
(x, y)-plane:

min J(ŷ) :=

∫ xB

xA

√

1 + ˙̂y(x)2 dt,

on D̂ := {ŷ ∈ Ĉ1[xA, xB ] : ŷ(xA) = yA, ŷ(xB) = yB}. It has been shown in
Example 2.18 that extremal trajectories for this problem correspond to straight lines,
ŷ?(x) = C1x+ C2.

We now ask the question whether ŷ? is a strong minimum for that problem? To answer
this question, consider the excess function of Weierstrass at ŷ?,

E (t, ŷ?, ˙̂y
?
, v) :=

√

1 + (C1 + v)2 −
√

1 + (C1)2 −
v

√

1 + (C1)2
.

a plot of this function is given in Fig. 2.5. for different values of C1 and v in the range
[−10, 10]. To confirm that the Weierstrass condition (2.25) is indeed satisfied at ŷ?, observe
that the function g : z 7→

√
1 + z2 is convex in z on IR. Hence, for a fixed z? ∈ IR, we

have (see Theorem A.17):

g(z? + v)− g(x?)− v∇g(x?) ≥ 0 ∀v ∈ IR,

which is precisely the Weierstrass’ condition. This result based on convexity is generalized
in the following remark.
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Figure 2.5. Excess function of Weierstrass for the minimum path problem.

The following corollary indicates that the Weierstrass condition is also useful to detect
strong (local) minima in the class of C1 functions.

Corollary 2.38 (Weierstrass’ Necessary Condition). Consider the problem to minimize
the functional

J(x) :=

∫ t2

t1

`(t,x(t), ẋ(t))dt,
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on D := {x ∈ C1[t1, t2]
nx : x(t1) = x1,x(t2) = x2}. Suppose x?(t), t1 ≤ t ≤ t2, gives

a strong (local) minimum for J on D. Then,

E (t,x?, ẋ?,v) := `(t,x?, ẋ? + v)− `(t,x?, ẋ?)− vT`ẋ(t,x?, ẋ?) ≥ 0,

at every t ∈ [t1, t2] and for each v ∈ IRnx .

Proof. By Theorem 2.30, we know that x? also minimizes J on D̂ locally with respect to
the strong norm ‖ · ‖, so the above Theorem 2.36 is applicable.

Remark 2.39 (Weierstrass’ Condition and Convexity). It is readily seen that the Weier-
strass condition (2.25)is satisfied automatically when the Lagrange function `(t,y, z) is par-
tially convex (and continuously differentiable) in z ∈ IRnx , for each (t,y) ∈ [t1, t2]× IRnx .

Remark 2.40 (Weierstrass’ Condition and Pontryagin’s Maximum Principle). Inter-
estingly enough, the Weierstrass’ condition (2.25) can be rewritten as

`(t, x?, ẋ? + v)− (ẋ? + v) `ẋ(t, x
?, ẋ?) ≥ `(t, x?, ẋ?)− ẋ? `ẋ(t, x?, ẋ?).

That is, given the definition of the Hamiltonian functionH (see Remark 2.17), we get

H(t, x?, ẋ?) ≥ H(t, x?, ẋ? + v),

at every t ∈ [t1, t2] and for each v ∈ IR. This necessary condition prefigures Pontryagin’s
Maximum Principle in optimal control theory.

2.7 PROBLEMS WITH EQUALITY AND INEQUALITY CONSTRAINTS

We now turn our attention to problems of the calculus of variations in the presence of con-
straints. Similar to finite-dimensional optimization, it is more convenient to use Lagrange
multipliers in order to derive the necessary conditions of optimality associated with such
problems; these considerations are discussed in � 2.7.1 and � 2.7.2, for equality and inequal-
ity constraints, respectively. The method of Lagrange multipliers is then used in � 2.7.3
and � 2.7.4 to obtain necessary conditions of optimality for problems subject to (equality)
terminal constraints and isoperimetric constraints, respectively.

2.7.1 Method of Lagrange Multipliers: Equality Constraints

We saw in � 2.5.1 that a usable characterization for a (local) extremal point x? to a functional
J on a subset D of a normed linear space (X, ‖·‖) can be obtained by considering the Gâteaux
variations δJ(x?; ξ) along the D-admissible directions ξ at x?. However, there are subsets
D for which the set of D-admissible directions is empty, possibly at every point in D. In
this case, the abovementioned characterization does not provide valuable information, and
alternative conditions must be sought to characterize possible extremal points.

Example 2.41 (Empty Set of Admissible Directions). Consider the set D defined as

D := {x ∈ C1[t1, t2]
2 :

√

1

2
x1(t)2 +

1

2
x2(t)2 = 1, ∀t ∈ [t1, t2]},
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i.e., D is the set of smooth curves lying on a cylinder whose axis is the time axis and whose
cross sections are circles of radius

√
2 centered at x1(t) = x2(t) = 0. Let x̄ ∈ C1[t1, t2]

2

such that x̄1(t) = x̄2(t) = 1 for each t ∈ [t1, t2]. Clearly, x̄ ∈ D. But, for every
nonzero direction ξ ∈ C1[t1, t2]

2 and every scalar η 6= 0, x̄+ηξ /∈ D. That is, the set of D-
admissible directions is empty, for any functionalJ : C1[t1, t2]

2 → IR (see Definition 2.12).

In this subsection, we shall discuss the method of Lagrange multipliers. The idea behind
it is to characterize the (local) extremals of a functional J defined in a normed linear space
X, when restricted to one or more level sets of other such functionals. We have already
encountered many examples of constraining relations in the previous section, and most of
them can be described in terms of level sets of appropriately defined functionals:

Example 2.42. The set D defined as

D := {x ∈ C1[t1, t2] : x(t1) = x1, x(t2) = x2},

can be seen as the intersection of the x1-level set of the functional G1(x) := x(t1) with that
of the x2-level set of the functional G2(x) := x(t2). That is,

D = Γ1(x1) ∩ Γ2(x2),

where Γi(K) := {x ∈ C1[t1, t2] : Gi(x) = K}, i = 1, 2.

Example 2.43. Consider the same set D as in Example 2.41 above. Then, D can be seen
as the intersection of 1-level set of the (family of) functionals Gt defined as:

Gt(x) :=

√

1

2
x1(t)2 +

1

2
x2(t)2,

for t1 ≤ t ≤ t2. That is,
D =

⋂

t∈[t1,t2]

Γt(1),

where Γθ(K) := {x ∈ C1[t1, t2] : Gθ(x) = K}. Note that we get an uncountable number
of functionals in this case! This also illustrate why problems having path (or Lagrangian)
constraints are admittedly hard to solve...

The following Lemma gives conditions under which a point x̄ in a normed linear space
(X, ‖ · ‖) cannot be a (local) extremal of a functional J, when constrained to the level set
of another functional G.

Lemma 2.44. Let J and G be functionals defined in a neighborhood of x̄ in a normed linear
space (X, ‖ · ‖), and let K := G(x̄). Suppose that there exist (fixed) directions ξ1, ξ2 ∈ X

such that the Gâteaux derivatives of J and G satisfy the Jacobian condition
∣

∣

∣

∣

δJ(x̄; ξ1) δJ(x̄; ξ2)
δG(x̄; ξ1) δG(x̄; ξ2)

∣

∣

∣

∣

6= 0,
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and are continuous in a neighborhood of x̄ (in each direction ξ1, ξ2). Then, x̄ cannot be a
local extremal for J when constrained to Γ(K) := {x ∈ X : G(x) = K}, the level set of G

through x̄.

Proof. Consider the auxiliary functions

j(η1, η2) := J(x̄ + η1ξ1 + η2ξ2) and g(η1, η2) := G(x̄ + η1ξ1 + η2ξ2).

Both functions j and g are defined in a neighborhood of (0, 0) in IR2, since J and G are
themselves defined in a neighborhood of x̄. Moreover, the Gâteaux derivatives of J and G

being continuous in the directions ξ1 and ξ2 around x̄, the partials of j and g with respect
to η1 and η2,

jη1(η1, η2) = δJ(x̄ + η1ξ1 + η2ξ2; ξ1), jη2(η1, η2) = δJ(x̄ + η1ξ1 + η2ξ2; ξ2),

gη1(η1, η2) = δJ(x̄ + η1ξ1 + η2ξ2; ξ1), gη2(η1, η2) = δJ(x̄ + η1ξ1 + η2ξ2; ξ2),

exist and are continuous in a neighborhood of (0, 0). Observe also that the non-vanishing
determinant of the hypothesis is equivalent to the condition

∣

∣

∣

∣

∣

∂j
∂η1

∂j
∂η2

∂g
∂η1

∂g
∂η2

∣

∣

∣

∣

∣

η1=η2=0

6= 0.

Therefore, the inverse function theorem 2.A.61 applies, i.e., the application Φ := (j, g)
maps a neighborhood of (0, 0) in IR2 onto a region containing a full neighborhood of
(J(x̄),G(x̄)). That is, one can find pre-image points (η−1 , η

−
2 ) and (η+

1 , η
+
2 ) such that

J(x̄ + η−1 ξ1 + η−2 ξ2) < J(x̄) < J(x̄ + η+
1 ξ1 + η+

2 ξ2)

while G(x̄ + η−1 ξ1 + η−2 ξ2) = G(x̄) = G(x̄ + η+
1 ξ1 + η+

2 ξ2),

as illustrated in Fig. 2.6. This shows that x̄ cannot be a local extremal for J.
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(η−1 , η
−
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(η+
1 , η

+
2 )

(J(x̄ + η−1 ξ1 + η−2 ξ2),
G(x̄ + η−1 ξ1 + η−2 ξ2))

(J(x̄ + η+
1 ξ1 + η+

2 ξ2),
G(x̄ + η+

1 ξ1 + η+
2 ξ2))

η1

η2 Φ = (j, g)

j

g

g(0, 0) = G(x̄)

j(0, 0) = J(x̄)

Figure 2.6. Mapping of a neighborhood of (0, 0) in IR2 onto a (j, g) set containing a full
neighborhood of (j(0, 0), g(0, 0)) = (J(x̄), G(x̄)).

With this preparation, it is easy to derive necessary conditions for a local extremal in
the presence of equality or inequality constraints, and in particular the existence of the
Lagrange multipliers.
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Theorem 2.45 (Existence of the Lagrange Multipliers). Let J and G be functionals
defined in a neighborhood of x? in a normed linear space (X, ‖ · ‖), and having continuous
Gâteaux derivatives in this neighborhood. 3 Let also K := G(x?), and suppose that x? is
a (local) extremal for J constrained to Γ(K) := {x ∈ X : G(x) = K}. Suppose further
that δG(x?; ξ̄) 6= 0 for some direction ξ̄ ∈ X. Then, there exists a scalar λ ∈ IR such that

δJ(x?; ξ) + λ δG(x?; ξ) = 0, ∀ξ ∈ X.

Proof. Since x? is a (local) extremal for J constrained to Γ(K), by Lemma 2.44, we must
have that the determinant

∣

∣

∣

∣

δJ(x?; ξ̄) δJ(x?; ξ)
δG(x?; ξ̄) δG(x?; ξ)

∣

∣

∣

∣

= 0,

for any ξ ∈ X. Hence, with

λ := − δJ(x?; ξ̄)

δG(x?; ξ̄)
,

it follows that δJ(x?; ξ) + λ δG(x?; ξ) = 0, for each ξ ∈ X.

As in the finite-dimensional case, the parameter λ in Theorem 2.45 is called a Lagrange
multiplier. Using the terminology of directional derivatives appropriate to IRnx , the La-
grange condition δJ(x?; ξ) = −λδG(x?; ξ) says simply that the directional derivatives of
J are proportional to those of G at x?. Thus, in general, Lagrange’s condition means that
the level sets of both J and G at x? share the same tangent hyperplane at x?, i.e., they meet
tangentially. Note also that the Lagrange’s condition can also be written in the form

δ(J + λG)(x?; ·) = 0,

which suggests consideration of the Lagrangian function L := J + λG as in Remark 1.53
(p. 25).

It is straightforward, albeit technical, to extend the method of Lagrange multipliers to
problems involving any finite number of constraint functionals:

Theorem 2.47 (Existence of the Lagrange Multipliers (Multiple Constraints)). Let J

and G1, . . . ,Gng be functionals defined in a neighborhood of x? in a normed linear space
(X, ‖ · ‖), and having continuous Gâteaux derivatives in this neighborhood. Let also
Ki := Gi(x

?), i = 1, . . . , ng, and suppose that x? is a (local) extremal for J constrained
to GK := {x ∈ X : Gi(x) = Ki, i = 1, . . . , ng}. Suppose further that

∣

∣

∣

∣

∣

∣

∣

δG1(x
?; ξ̄1) · · · δG1(x

?; ξ̄ng )
...

. . .
...

δGng (x
?; ξ̄1) · · · δGng (x

?; ξ̄ng )

∣

∣

∣

∣

∣

∣

∣

6= 0,

for ng (independent) directions ξ̄1, . . . , ξ̄ng ∈ X. Then, there exists a vectorλ ∈ IRng such
that

δJ(x?; ξ) + [δG1(x
?; ξ) · · · δGng (x?; ξ)] λ = 0, ∀ξ ∈ X.

3In fact, it suffices to require that J and G have weakly continuous Gâteaux derivatives in a neighborhood of x? for
the result to hold:

Definition 2.46 (Weakly Continuous Gâteaux Variations). The Gâteaux variations δJ(x; ξ) of a functional
J defined on a normed linear space (X, ‖ · ‖) are said to be weakly continuous at x̄ provided that δJ(x; ξ) →
δJ(x̄; ξ) as x → x̄, for each ξ ∈ X.
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Proof. See, e.g., [55, Theorem 5.16] for a proof.

Remark 2.48 (Link to Nonlinear Optimization). The previous theorem is the general-
ization of Theorem 1.50 (p. 24) to optimization problems in normed linear spaces. Note,
in particular, that the requirement that x? be a regular point (see Definition 1.47) for the
Lagrange multipliers to exist is generalized by a non-singularity condition in terms of the
Gâteaux derivatives of the constraint functionals G1, . . . ,Gng . Yet, this condition is in
general not sufficient to guarantee uniqueness of the Lagrange multipliers.

Remark 2.49 (Hybrid Method of Admissible Directions and Lagrange Multipliers).
If x? ∈ D, with D a subset of a normed linear space (X, ‖ · ‖), and the D-admissible
directions form a linear subspace of X (i.e., ξ1, ξ2 ∈ D ⇒ η1ξ1 + η2ξ2 ∈ D for every
scalars η1, η2 ∈ IR), then the conclusions of Theorem 2.47 remain valid when further
restricting the continuity requirement for J to D and considering D-admissible directions
only. Said differently, Theorem 2.47 can be applied to determine (local) extremals to the
functional J|

D
constrained to Γ(K). This extension leads to a more efficient but admittedly

hybrid approach to certain problems involving multiple constraints: Those constraints on
J which determine a domain D having a linear subspace of D-admissible directions, may
be taken into account by simply restricting the set of admissible directions when applying
the method of Lagrangian multipliers to the remaining constraints.

Example 2.50. Consider the problem to minimize J(x) :=
∫ 0

−1
[ẋ(t)]3 dt, on D := {x ∈

C1[−1, 0] : x(−1) = 0, x(0) = 1}, under the constraining relation G(x) :=
∫ 0

−1 t ẋ(t) dt =
−1.

A possible way of dealing with this problem is by characterizing D as the intersection of
the 0- and 1-level sets of the functionals G1(x) := x(−1), G2(x) := x(0), respectively, and
then apply Theorem 2.47 with ng = 3 constraints. But, since the D-admissible directions
for J at any point x ∈ D form a linear subspace of C1[−1, 0], we may as well utilize a
hybrid approach, as discussed in Remark 2.49 above, to solve the problem.

Necessary conditions of optimality for problems with end-point constraints and isoperi-
metric constraints shall be obtained with this hybrid approach in � 2.7.3 and � 2.7.4, respec-
tively.

2.7.2 Extremals with Inequality Constraints

The method of Lagrange multipliers can also be used to address problems of the calculus
of variations having inequality constraints (or mixed equality and inequality constraints),
as shown by the following:

Theorem 2.51 (Existence of Uniqueness of the Lagrange Multipliers (Inequality Con-
straints)). Let J and G1, . . . ,Gng be functionals defined in a neighborhood of x? in a
normed linear space (X, ‖ · ‖), and having continuous and linear Gâteaux derivatives
in this neighborhood. Suppose that x? is a (local) minimum point for J constrained to
Γ(K0 := {x ∈ X : Gi(x) ≤ Ki, i = 1, . . . , ng}, for some constant vector K. Suppose
further that na ≤ ng constraints, say G1, . . . ,Gna for simplicity, are active at x?, and
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satisfy the regularity condition

det G =

∣

∣

∣

∣

∣

∣

∣

δG1(x
?; ξ̄1) · · · δG1(x

?; ξ̄na)
...

. . .
...

δGna(x
?; ξ̄1) · · · δGna(x

?; ξ̄na)

∣

∣

∣

∣

∣

∣

∣

6= 0,

forna (independent)directions ξ̄1, . . . , ξ̄na ∈ X (the remaining constraints being inactive).
Then, there exists a vector ν ∈ IRng such that

δJ(x?; ξ) +
[

δG1(x
?; ξ) . . . δGng (x

?; ξ)
]

ν = 0, ∀ξ ∈ X, (2.26)

and,

νi ≥ 0 (2.27)
(Gi(x

?)−Ki) νi = 0, (2.28)

for i = 1, . . . , ng.

Proof. Since the inequality constraints Gna+1, . . . ,Gng are inactive, the conditions (2.27)
and (2.28) are trivially satisfied by taking νna+1 = · · · = νng = 0. On the other hand, since
the inequality constraints G1, . . . ,Gna are active and satisfy a regularity condition at x?, the
conclusion that there exists a unique vector λ ∈ IRng such that (2.26) holds follows from
Theorem 2.47; moreover, (2.28) is trivially satisfied for i = 1 . . . , na. Hence, it suffices to
prove that the Lagrange multipliers ν1 = · · · = νna cannot assume negative values when
x? is a (local) minimum.

We show the result by contradiction. Without loss of generality, suppose that ν1 < 0,
and consider the (na + 1)× na matrix A defined by

A =











δJ(x?; ξ̄1) · · · δJ(x?; ξ̄na)
δG1(x

?; ξ̄1) · · · δG1(x
?; ξ̄na)

...
. . .

...
δGna(x

?; ξ̄1) · · · δGna(x
?; ξ̄na)











.

By hypothesis, rank AT ≥ na − 1, hence the null space of A has dimension lower than or
equal to 1. But from (2.26), the nonzero vector (1, ν1, . . . , νna)

T ∈ ker AT. That is, ker AT

has dimension equal to 1, and

ATy < 0 only if ∃η ∈ IR such that y = η(1, ν1, . . . , νna)
T.

Because ν1 < 0, there does not exist a y 6= 0 in ker AT such that yi ≥ 0 for every
i = 1, . . . , na + 1. Thus, by Gordan’s Theorem 1.A.78, there exists a nonzero vector
p ≥ 0 in IRna such that Ap < 0, or equivalently,

na
∑

k=1

pkδJ
(

x?; ξ̄k
)

< 0

na
∑

k=1

pkδGi
(

x?; ξ̄k
)

< 0, i = 1, . . . , na.
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The Gâteaux derivatives of J,G1, . . . ,Gna being linear (by assumption), we get

δJ
(

x?;
∑na

k=1 pkξ̄k
)

< 0 (2.29)

δGi
(

x?;
∑na

k=1 pkξ̄k
)

< 0, i = 1, . . . , na.

In particular,

∃δ > 0 such that x? + η
∑na
k=1 pkξ̄k ∈ Γ(K), ∀0 ≤ η ≤ δ.

That is, x? being a local minimum of J on GK,

∃δ′ ∈ (0, δ] such that J
(

x? + η
∑na

k=1 pkξ̄k
)

≥ J(x?), ∀0 ≤ η ≤ δ′,

and we get

δJ
(

x?;
∑na

k=1 pkξ̄k
)

= lim
η→+

J(x? + η
∑na
k=1 pkξ̄k)− J(x?)

η
≥ 0,

which contradicts the inequality (2.29) obtained earlier.

2.7.3 Problems with End-Point Constraints: Transversal Conditions

So far, we have only considered those problems with either free or fixed end-times t1, t2 and
end-points x(t1), x(t2). Yet, many problems of the calculus of variations do not fall into
this formulation. As just an example, in the Brachistochrone problem 2.1, the extremity
point B could very well be constrained to lie on a curve, rather than a fixed point.

In this subsection, we shall consider problems having end-point constraints of the form
φ(t2,x(t2)) = 0, with t2 being specified or not. Note that this formulation allows to deal
with fixed end-point problems as in � 2.5.2, e.g., by specifying the end-point constraint as
φ := x(t2)−x2. In the case t2 is free, t2 shall be considered as an additional variable in the
optimization problem. Like in � 2.5.5,we shall then define the functionsx(t) by extension on
a “sufficiently” large interval [t1, T ], and consider the linear space C1[t1, T ]nx×IR, supplied
with the weak norm ‖(x, t)‖1,∞ := ‖x‖1,∞ + |t|. In particular, Theorem 2.47 applies
readily by specializing the normed linear space (X, ‖ · ‖) to (C1[t1, T ]nx × IR, ‖(·, ·)‖1,∞),
and considering the Gâteaux derivative δJ(x, t2; ξ, τ) at (x, t2) in the direction (ξ, τ).
These considerations yield necessary conditions of optimality for problems with end-point
constraints as given in the following:

Theorem 2.52 (Transversal Conditions). Consider the problem to minimize the functional

J(x, t2) :=

∫ t2

t1

`(t,x(t), ẋ(t))dt,

on D := {(x, t2) ∈ C1[t1, T ]nx × [t1, T ] : x(t1) = x1,φ(t2,x(t2)) = 0}, with ` ∈
C1([t1, T ]× IR2×nx) and φ ∈ C1([t1, T ]× IRnx)nx . Suppose that (x?, t?2) gives a (local)
minimum for J on D, and rank (φt φx) = nx at (x?(t?2), t

?
2). Then, x? is a solution to

the Euler equation (2.12) satisfying both the end-point constraints x?(t1) = x1 and the
transversal condition

[(

`− ẋT`ẋ

)

dt + `ẋ
Tdx

]

x=x?,t=t?
2

= 0 ∀(dt dx) ∈ ker (φt φx) . (2.30)
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Figure 2.7. Extremal trajectory x?(t) in [t1, t
?
2], and a neighboring admissible trajectory x?(t) +

ηξ(t) in [t1, t
?
2 + ητ ].

In particular, the transversal condition (2.30) reduces to

[φx (`− ẋ`ẋ)− φt`ẋ]x=x?,t=t?
2

= 0, (2.31)

in the scalar case (nx = 1).

Proof. Observe first that by fixing t2 := t?2 and varying x? in the D-admissible direction
ξ ∈ C1[t1, t

?
2]
nx such that ξ(t1) = ξ(t?2) = 0, we show as in the proof of Theorem 2.14

that x? must be a solution to the Euler equation (2.12) on [t1, t
?
2]. Observe also that the

right end-point constraints may be expressed as the zero-level set of the functionals

Pk := φk(t2,x(t2)) k = 1, . . . , nx.

Then, using the Euler equation, it is readily obtained that

δJ(x?, t?2; ξ, τ) = `ẋ [x?(t?2)]
T
ξ(t?2) + ` [x?(t?2)] τ

δPk(x
?, t?2; ξ, τ) = (φk)t [x

?(t?2)] τ + (φk)x [x?(t?2)]
T (ξ(t?2) + ẋ(t?2)τ) ,

where the usual compressed notation is used. Based on the differentiability assumptions
on ` and φ, it is clear that these Gâteaux derivatives exist and are continuous. Further,
since the rank condition rank (φt φx) = nx holds at (x?(t?2), t

?
2), one can always find nx

(independent) directions (ξ̄k, τ̄k) ∈ C1[t1, t2]
nx × IR such that the regularity condition,

∣

∣

∣

∣

∣

∣

∣

δP1(x
?, t?2; ξ̄1, τ̄1) · · · δP1(x

?, t?2; ξ̄nx , τ̄nx)
...

. . .
...

δPnx(x
?, t?2; ξ̄1, τ̄1) · · · δPnx(x

?, t?2; ξ̄nx , τ̄nx)

∣

∣

∣

∣

∣

∣

∣

6= 0,

is satisfied.
Now, consider the linear subspace Ξ := {(ξ, τ) ∈ C1[t1, T ]nx × IR : ξ(t1) = 0}. Since

(x?, t?2) gives a (local) minimum for J on D, by Theorem 2.47 (and Remark 2.49), there is
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a vector λ ∈ IRnx such that

0 = δ (J +
∑nx

k=1λkPk) (x?, t?2; ξ, τ)

=
(

` [x?(t?2)]− ẋT(t?2)`ẋ [x?(t?2)] + λTφt [x
?(t?2)]

)

τ

+
[

`ẋ [x?(t?2)] + λ
Tφx [x?(t?2)]

]T
(ξ(t?2) + ẋ(t?2)τ)

for each (ξ, τ) ∈ Ξ. In particular, restricting attention to those (ξ, τ) ∈ Ξ such that
ξ(t1) = 0 and ξ(t?2) = −ẋ(t?2)τ , we get

0 =
(

` [x?(t?2)]− ẋT(t?2)`ẋ [x?(t?2)] + λTφt [x
?(t?2)]

)

τ,

for every τ sufficiently small. Similarly, considering those variations (ξ, τ) ∈ Ξ such that
ξ = (0, . . . , 0, ξi, 0, . . . , 0)T with ξi(t1) = 0 and τ = 0, we obtain

0 =
[

`ẋi [x
?(t?2)] + λTφxi [x

?(t?2)]
]T
ξi(t

?
2),

for every ξi(t?2) sufficiently small, and for each i = 1, . . . , nx. Dividing the last two
equations by τ and ξi(t?2), respectively, yields the system of equations

λT (φt φx) =
(

` [x?(t?2)]− ẋT(t?2)`ẋ [x?(t?2)] `ẋ [x?(t?2)]
)T
.

Finally, since rank (φt φx) = nx, we have dim ker (φt φx) = 1, and

(

` [x?(t?2)]− ẋT(t?2)`ẋ [x?(t?2)] `ẋ [x?(t?2)]
)T

d = 0,

for each d ∈ ker (φt φx).

Example 2.53 (Minimum Path Problem with Variable End-Point). Consider the prob-
lem to minimize the distance between a fixed pointA = (xA, yA) and theB = (xB , yB) ∈
{(x, y) ∈ IR2 : y = ax + b}, in the (x, y)-plane. We want to find the curve y(x),
xA ≤ x ≤ xB such that the functional J(y, xB) :=

∫ xB

xA

√

1 + ẏ(x)2dx is minimized, sub-
ject to the bound constraints y(xA) = yA and y(xB) = axB + b. We saw in Example 2.18
that ˙̄y(x) must be constant along an extremal trajectory ȳ ∈ C1[xA, xB ], i.e.

y(x) = C1x+ C2.

Here, the constants of integration C1 and C2 must verify the end-point conditions

y(xA) = yA = C1xA + C2

y(xB) = a xB + b = C1xB + C2,

which yields a system of two equations in the variables C1, C2 and xB . The additional
relation is provided by the transversal condition (2.31) as

−a ẏ(x) = −aC1 = 1.
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Note that this latter condition expresses the fact that an extremal ȳ(x) must be orthogonal
to the boundary end-point constraint y = ax + b at x = xB , in the (x, y)-plane. Finally,
provided that a 6= 0, we get:

ȳ(x) = yA −
1

a
(x− xA)

x̄B =
a(yA − b)− xA

1 + a2
.

2.7.4 Problems with Isoperimetric Constraints

An isoperimetric problem of the calculus of variations is a problem wherein one or more
constraints involves the integral of a given functional over part or all of the integration
horizon [t1, t2]. Typically,

min
x(t)

∫ t2

t1

`(t,x(t), ẋ(t))dt subject to:
∫ t2

t1

ψ(t,x(t), ẋ(t))dt = K.

Such isoperimetric constraints arise frequently in geometry problems such as the determi-
nation of the curve [resp. surface] enclosing the largest surface [resp. volume] subject to a
fixed perimeter [resp. area].

The following theorem provides a characterization of the extremals of an isoperimetric
problem, based on the method of Lagrange multipliers introduced earlier in � 2.7.1.

Theorem 2.54 (First-Order Necessary Conditions for Isoperimetric Problems). Con-
sider the problem to minimize the functional

J(x) :=

∫ t2

t1

`(t,x(t), ẋ(t))dt,

on D := {x ∈ C1[t1, t2]
nx : x(t1) = x1,x(t2) = x2}, subject to the isoperimetric

constraints

Gi(x) :=

∫ t2

t1

ψi(t,x(t), ẋ(t))dt = Ki, i = 1, . . . , ng,

with ` ∈ C1([t1, t2] × IR2×nx) and ψi ∈ C1([t1, t2] × IR2×nx), i = 1, . . . , ng. Suppose
that x? ∈ D gives a (local) minimum for this problem, and

∣

∣

∣

∣

∣

∣

∣

δG1(x
?; ξ̄1) · · · δGng (x

?; ξ̄ng )
...

. . .
...

δG1(x
?; ξ̄1) · · · δGng (x

?; ξ̄ng )

∣

∣

∣

∣

∣

∣

∣

6= 0,

for ng (independent) directions ξ̄1, . . . , ξ̄ng ∈ C1[t1, t2]
nx . Then, there exists a vector λ

such that x? is a solution to the so called Euler-Lagrange’s equation

d
dt
Lẋi(t,x, ẋ,λ) =Lxi(t,x, ẋ,λ), i = 1, . . . , nx, (2.32)

where
L(t,x, ẋ,λ) = `(t,x, ẋ) + λTψ(t,x, ẋ).
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Proof. Remark first that, from the differentiability assumptions on ` and ψi, i = 1, . . . , ng ,
the Gâteaux derivatives δJ(x?; ξ) and δGi(x?; ξ), i = 1, . . . , ng, exist and are continuous
for every ξ ∈ C1[t1, t2]

nx . Since x? ∈ D gives a (local) minimum for J on D constrained to
Γ(K) := {x ∈ C1[t1, t2]

nx : Gi(x) = Ki, i = 1, . . . , ng}, and x? is a regular point for the
constraints, by Theorem 2.47 (and Remark 2.49), there exists a constant vector λ ∈ IRng

such that
δJ(x?; ξ) + [δG1(x

?; ξ) . . . δGng (x
?; ξ)] λ = 0,

for each D-admissible direction ξ. Observe that this latter condition is equivalent to that of
finding a minimizer to the functional

Ĵ(x) :=

∫ t2

t1

`(t,x, ẋ) + λTψ(t,x, ẋ) dt :=

∫ t2

t1

L(t,x, ẋ,λ) dt,

on D. The conclusion then directly follows upon applying Theorem 2.14.

Remark 2.55 (First Integrals). Similar to free problems of the calculus of variations (see
Remark 2.17), it can be shown that the Hamiltonian functionH defined as

H := L− ẋTLẋ,

is constant along an extremal trajectory provided thatL does not depend on the independent
variable t.

Example 2.56 (Problem of the Surface of Revolution of Minimum Area). Consider the
problem to find the smooth curve x(t) ≥ 0, having a fixed length µ > 0, joining two given
points A = (tA, xA) and B = (tB , xB), and generating a surface of revolution around
the t-axis of minimum area (see Fig 2.8.). In mathematical terms, the problem consists of
finding a minimizer of the functional

J(x) := 2π

∫ tB

tA

x(t)
√

1 + ẋ(t)2dt,

on D := {x ∈ C1[tA, tB ] : x(tA) = xA, x(tB) = xB}, subject to the isoperimetric
constraint

Θ(x) :=

∫ tB

tA

√

1 + ẋ(t)2dt = µ.

Let us drop the coefficient 2π in J, and introduce the Lagrangian L as

L(x, ẋ, λ) := x(t)
√

1 + ẋ(t)2 + λ
√

1 + ẋ(t)2.

Since L does not depend on the independent variable t, we use the fact that H must be
constant along an extremal trajectory x̄(t),

H := L − ẋTLẋ = C1,

for some constant C1 ∈ IR. That is,

x̄(t) + λ = C
√

1 + ˙̄x(t)2.
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Let ȳ be defined as ˙̄x = sinh ȳ. Then, x̄ = C1 cosh ȳ − λ and dx̄ = C1 sinh ȳ dȳ. That is,
dt = (sinh ȳ)−1dx̄ = C1dy, from which we get t = C1ȳ + C2, with C2 ∈ IR another
constant of integration. Finally,

x̄(t) = C1 cosh

(

t− C2

C1

)

− λ.

We obtain the equation of a family of catenaries, where the constants C1, C2 and the
Lagrange multiplier λ are to be determined from the boundary conditions x̄(tA) = xA and
x̄(tB) = xB , as well as the isoperimetric constraint Θ(x̄) = µ.

PSfrag replacements

t

x(t)

A = (tA, xA)

B = (tB , xB)

µ

Figure 2.8. Problem of the surface of revolution of minimum area.

2.8 NOTES AND REFERENCES

The material presented in this chapter is mostly a summary of the material in Chapters 2
through 7 of Troutman’s book [55]. The books by Kamien and Schwartz [28] and Culioli
[17] have also been very useful in writing this chapter.

Note that sufficient conditions which do not rely on the joint-convexityof the Lagrangian
function have not been presented herein. This is the case in particular for Jacobi’s sufficient
condition which uses the concept of conjugacy. However, this advanced material falls out
of the scope of this textbook. We refer the interested reader to the books by Troutman [55,
Chapter 9] and Cesari [16, Chapter 2], for a thorough description, proof and discussion of
these additional optimality conditions.

It should also be noted that problems having Lagrangian constraints have not been
addressed in this chapter. This discussion is indeed deferred until the following chapter on
optimal control.

Finally, we note that a number of results exist regarding the existence of a solution to
problems of the calculus of variations, such as Tonelli’s existence theorem. Again, the
interested (and somewhat courageous) reader is referred to [16] for details.

Appendix: Technical Lemmas

Lemma 2.A.57 (duBois-Reymond’s Lemma). LetD be a subset of IR containing [t1, t2],
t1 < t2. Let also h be a continuous function on D, such that

∫ t2

t1

h(t)ξ̇(t)dt = 0,
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for every continuously differentiable function ξ such that ξ(t1) = ξ(t2) = 0. Then, h is
constant over [t1, t2].

Proof. For every real constant C and every function ξ as in the lemma, we have
∫ t2

t1
Cξ̇(t)dt = C [ξ(t2)− ξ(t1)] = 0. That is,

∫ t2

t1

[h(t)− C] ξ̇(t)dt = 0.

Let

ξ̃(t) :=

∫ t

t1

[

h(τ)− C̃
]

dτ and C̃ :=
1

t2 − t1

∫ t2

t1

h(t)dt.

By construction, ξ̃ is continuously differentiable on [t1, t2] and satisfies ξ̃(t1) = ξ̃(t2) = 0.
Therefore,

∫ t2

t1

[

h(t)− C̃
]

˙̃
ξ(t)dt =

∫ t2

t1

[

h(t)− C̃
]2

dt = 0,

hence, h(t) = C̃ in [t1, t2].

Lemma 2.A.58. Let P(t) and Q(t) be given continuous (nx × nx) symmetric matrix
functions on [t1, t2], and let the quadratic functional

∫ t2

t1

[

ξ̇(t)
T
P(t)ξ̇(t) + ξ(t)

TQ(t)ξ(t)
]

dt, (2.A.1)

be defined for all ξ ∈ C1[t1, t2]
nx such that ξ(t1) = ξ(t2) = 0. Then, a necessary condition

for (2.A.1) to be nonnegative for all such ξ is that P(t) be semi-definite positive for each
t1 ≤ t ≤ t2.

Proof. See. e.g., [22, � 29.1, Theorem 1].

Theorem 2.A.59 (Differentiation Under the Integral Sign). Let ` : IR × IR → IR,
such that ` := `(t, η), be a continuous function with continuous partial derivative `η on
[t1, t2]× [η1, η2]. Then,

f(η) :=

∫ t2

t1

`(t, η) dt

is in C1[η1, η2], with the derivatives

d
dη
f(η) =

d
dη

∫ t2

t1

`(t, η) dt =

∫ t2

t1

`η(t, η) dt.

Proof. See. e.g., [55, Theorem A.13].

Theorem 2.A.60 (Leibniz). Let ` : IR × IR → IR, such that ` := `(t, η), be a continuous
function with continuous partial derivative `η on [t1, t2] × [η1, η2]. Let also h : IR → IR
be continuously differentiable on [η1, η2] with range in [t1, t2],

h(η) ∈ [t1, t2], ∀η ∈ [η1, η2].

Then,
d

dη

∫ h(η)

t1

`(t, η) dt =

∫ h(η)

t1

`η(t, η) dt+ `(h(η), η)
d

dη
h(η).
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Proof. See. e.g., [55, Theorem A.14].

Lemma 2.A.61 (Inverse Function Theorem). Let x0 ∈ IRnx and η > 0. If a function
Φ : Bη (x0) → IRnx has continuous first partial derivatives in each component with non-
vanishing Jacobian determinant at x0, then Φ provides a continuously invertible mapping
between Bη (x0) and a region containing a full neighborhood of Φ(x0).





CHAPTER 3

OPTIMAL CONTROL

“What is now proved was once only imagined.”
—William Blake.

3.1 INTRODUCTION

After more than three hundred years of evolution, optimal control theory has been formu-
lated as an extension of the calculus of variations. Based on the theoretical foundation
laid by several generations of mathematicians, optimal control has developed into a well-
established research area and finds its applications in many scientific fields, ranging from
mathematics and engineering to biomedical and management sciences. The maximum
principle, developed in the late 1950s by Pontryagin and his coworkers [41], is among
the biggest successes in optimal control. This principle as well as other results in optimal
control apply to any problems of the calculus of variations discussed earlier in Chapter 2
(and gives equivalent results, as one would expect). This extension is most easily seen by
considering the prototypical problem of the calculus of variations that consists of choosing
a continuously differentiable function x(t), t1 ≤ t ≤ t2, to

minimize:
∫ t2

t1

`(t,x(t), ẋ(t)) dt

subject to: x(t1) = x1.

Nonlinear and Dynamic Optimization: From Theory to Practice. By B. Chachuat�
2007 Automatic Control Laboratory, EPFL, Switzerland

105



106 OPTIMAL CONTROL

Indeed, the above problem is readily transformed into the equivalent problem of finding a
continuously differentiable function u(t), t1 ≤ t ≤ t2, to

minimize:
∫ t2

t1

`(t,x(t),u(t)) dt

subject to: ẋ(t) = u(t); x(t1) = x1.

Optimal control refers to this latter class of problems. In optimal control problems, vari-
ables are separated into two classes, namely the state (or phase) variables and the control
variables. The evolution of the former is dictated by the latter, via a set of differential
equations. Further, the control as well as the state variables are generally subject to con-
straints, which make many problems in optimal control non-classical, since problems with
path constraints can hardly be handled in the classical calculus of variations. That is, the
problem of optimal control can then be stated as: “Determine the control signals that will
cause a system to satisfy the physical constraints and, at the same time, minimize (or maxi-
mize) some performance criterion.” A precise mathematical formulation of optimal control
problems shall be given in � 3.2 below.

Despite its successes, however, optimal control theory is by no means complete, es-
pecially when it comes to the question of whether an optimal control exists for a given
problems. The existence problem is of crucial importance, since it does not make much
sense to seek a solution if none exists. As just an example, consider the problem of steering
a system, from a prescribed initial state, to a fixed target, e.g., in minimum time. To find out
whether an optimal control exists, one may start by investigating whether a feasible control
can be found, i.e., one that satisfies the physical constraints. This latter question is closely
related to system controllability in classical control theory, i.e., the ability to transfer the
system from any initial state to any desired final state in a finite time. Should the system
be uncontrollable, it is then likely that no successful control may be found for some initial
states. And even though the system can be shown to be controllable, there may not exist an
optimal control in the prescribed class of controls. The difficult problem of the existence
of an optimal control shall be further discussed in � 3.3.

Another important topic is to actually find an optimal control for a given problem, i.e.,
give a ‘recipe’ for operating the system in such a way that it satisfies the constraints in an
optimal manner. Similar to the previous chapters on NLP and on the calculus of variations,
our goal shall be to derive algebraic conditions that are either necessary or sufficient for
optimality. These conditions are instrumental for singling out a small class of candidates
for an optimal control. First, we shall investigate the application of variational methods
to obtain necessary conditions of optimality for problems without state or control path
constraints in � 3.4; this will develop familiarity with the new notation and tools. Then,
we shall consider methods based on so-called maximum principles, such as Pontryagin
maximum principle, to address optimal control problems having path constraints in � 3.5.

Finally, as most real-world problems are too complex to allow for an analytical solution,
computational algorithms are inevitable in solving optimal control problems. As a result,
several successful families of algorithms have been developed over the years. We shall
present both direct and indirect approaches to solving optimal control problems in � 3.6.

3.2 PROBLEM STATEMENT

The formulation of an optimal control problem requires several steps: the class of admissible
controls is discussed in � 3.2.1; the mathematical description (or model) of the system to be
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controlled is considered in � 3.2.2; the specification of a performance criterion is addressed
in � 3.2.3; then, the statement of physical constraints that should be satisfied is described in

� 3.2.4. Optimal criteria are discussed next in � 3.2.5. Finally, we close the section with a
discussion on open-loop and closed-loop optimal control laws in � 3.2.6.

3.2.1 Admissible Controls

We shall consider the behavior of a system whose state at any instant of time is characterized
bynx ≥ 1 real numbersx1, . . . , xnx (for example, these may be coordinates and velocities).
The vector space of the system under consideration is called the phase space. It is assumed
that the system can be controlled, i.e., the system is equipped with controllers whose
position dictates its future evolution. These controllers are characterized by points u =
(u1, . . . , unu) ∈ IRnu , nu ≥ 1, namely the control variables.

In the vast majority of optimal control problems, the values that can be assumed by the
control variables are restricted to a certain control regionU , which may be any set in IRnu .
In applications, the case where U is a closed region in IRnu is important. For example, the
control region U may be a hypercube,

|uj | ≤ 1, j = 1, . . . , nu.

The physical meaning of choosing a closed and bounded control region is clear. The quantity
of fuel being supplied to a motor, temperature, current, voltage, etc., which cannot take on
arbitrarily large values, may serve as control variables. More general relations, such as

φ(u) = 0,

may also exist among the control variables.
We shall call every function u(·), defined on some time interval t0 ≤ t ≤ tf, a control. A

control is an element of a (normed) linear space of real-vector-valued functions. Throughout
this chapter, we shall consider the class of continuous controls or, more generally, piecewise
continuous controls (see Fig. 3.1.):

Definition 3.1 (Piecewise Continuous Functions). A real-valued function u(t), t0 ≤ t ≤
tf, is said to be piecewise continuous, denoted u ∈ Ĉ [t0, tf], if there is a finite (irreducible)
partition t0 = θ0 < θ1 < · · · < θN < θN+1 = tf such that u may be regarded as a
function in C [θk, θk+1] for each k = 0, 1, . . . , N .

That is, the class Ĉ [t0, tf]nu of nu-dimensional vector-valued analogue of Ĉ [t0, tf], con-
sists of those controls u with componentsuj ∈ Ĉ [t0, tf], j = 1, . . . , nu. The discontinuities
of one such control are by definition those of any of its components uj .

Note that piecewise continuous controls correspond to the assumption of inertia-less
controllers, since the values of u(t) may jump instantaneously when a discontinuity is met.
This class of controls appears to be the most interesting for the practical applications of the
theory, although existence of an optimal control is not guaranteed in general, as shall be
seen later in � 3.3.

The specification of the control region together with a class of controls leads naturally
to the definition of an admissible control:

Definition 3.2 (Admissible Control). A piecewise continuous control u(·), defined on
some time interval t0 ≤ t ≤ tf, with range in the control region U ,

u(t) ∈ U, ∀t ∈ [t0, tf],
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is said to be an admissible control.

We shall denote by U[t0, tf] the class of admissible controls on [t0, tf]. It follows from
Definition 3.1 that every admissible control u ∈ U[t0, tf] is bounded.

PSfrag replacements
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Figure 3.1. Illustration of a piecewise continuous control u ∈ Ĉ [t0, tf] (red line), and the
corresponding piecewise continuously differentiable response x ∈ Ĉ1[t0, tf] (blue line).

3.2.2 Dynamical System

A nontrivial part of any control problem is modeling the system. The objective is to
obtain the simplest mathematical description that adequately predicts the response of the
physical system to all admissible controls. We shall restrict our discussion herein to systems
described by ordinary differential equations (ODEs) in state-space form,

ẋ(t) = f(t,x(t),u(t)); x(t0) = x0. (3.1)

Here, t ∈ IR stands for the independent variable, usually called time; in the case where
f does not depend explicitely on t, the system is said to be autonomous. The vector
u(t) ∈ U represents the control (or input or manipulated) variables at time instant t. The
vector x(t) ∈ IRnx , nx ≥ 1, represents the state (or phase) variables, which characterize
the behavior of the system at any time instant t. A solution x(t;x0,u(·)) of (3.1) is
called a response of the system, corresponding to the control u(·), for the initial condition
x(t0) = x0.

It shall also be assumed that f is continuous in the variables t,x,u and continuously
differentiable with respect to x; in other words, the functions f(t,x,u) and fx(t,x,u) :=
∂f
x

(t,x,u) are defined and continuous, say on [t0, tf] × IRnx × IRnu . This additional
assumption ensures that a solution of (3.1) exists and is unique (at least locally) by The-
orem A.46. 1 Further, the response x(t;x0,u(·)) is piecewise continuously differentiable
(see Definition 2.28, p. 82, and Fig. 3.1.) in its maximum interval of existence.

3.2.3 Performance Criterion

A performance criterion (also called cost functional, or simply cost) must be specified for
evaluating the performance of a system quantitatively. By analogy to the problems of the

1See Appendix A.5 for a summary of local existence and uniqueness theorems for the solutions of nonlinear ODEs,
as well as theorems on their continuous dependence and differentiability with respect to parameters.
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calculus of variations (see � 2.2.1, p. 63), the cost functional J : U[t0, tf] → IR may be
defined in the so-called Lagrange form,

J(u) :=

∫ tf

t0

`(t,x(t),u(t)) dt. (3.2)

In this chapter, we shall assume that the Lagrangian `(t,x,u) is defined and continuous,
together with its partial derivatives `x(t,x,u) on IR × IRnx × IRnu . Moreover, either the
initial time t0 and final time tf may be considered a fixed or a free variable in the optimization
problem.

The objective functional may as well be specified in the Mayer form,

J(u) :=ϕ(t0,x(t0), tf,x(tf)), (3.3)

with ϕ : IR × IRnx × IR × IRnx → IR being a real-valued function. Again, it shall be
assumed throughout that ϕ(t0,x0, tf,xf) and ϕx(t0,x0, tf,xf) exist and are continuous on
IR × IRnx × IR × IRnx .

More generally, we may consider the cost functional in the Bolza form, which corresponds
to the sum of an integral term and a terminal term as

J(u) :=ϕ(t0,x(t0), tf,x(tf)) +

∫ tf

t0

`(t,x(t),u(t)) dt. (3.4)

Interestingly enough, Mayer, Lagrange and Bolza problem formulations can be shown
to be theoretically equivalent:

◦ Lagrange problems can be reduced to Mayer problems by introducing an additional
state x`, the new state vector x̃ := (x`, x1, . . . , xnx)

T, and an additional differential
equation

ẋ`(t) = `(t,x(t),u(t)); x`(t0) = 0.

Then, the cost functional (3.2) is transformed into one of the Mayer form (3.3) with
ϕ(t0, x̃(t0), tf, x̃(tf)) := x`(tf).

◦ Conversely, Mayer problems can be reduced to Lagrange problems by introducing
an additional state variable x`, the new state vector x̃ := (x`,x

T)
T
, and an additional

differential equation

ẋ`(t) = 0; x`(t0) =
1

tf − t0
ϕ(t0,x(t0), tf,x(tf)).

That is, the functional (3.3) can be rewritten in the Lagrange form (3.2) with
`(t, x̃(t),u(t)) := x`(t).

◦ Finally, the foregoing transformations can be used to rewrite Bolza problems (3.4)
in either the Mayer form or the Lagrange form, while it shall be clear that Mayer
and Lagrange problems are special Bolza problems with `(t, x̃(t),u(t)) := 0 and
ϕ(t0, x̃(t0), tf, x̃(tf)) := 0, respectively.

3.2.4 Physical Constraints

A great variety of constraints may be imposed in an optimal control problem. These
constraints restrict the range of values that can be assumed by both the control and the
state variables. One usually distinguishes between point constraints and path constraints;
optimal control problems may also contain isoperimetric constraints. All these constraints
can be of equality or inequality type.
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Point Constraints. These constraints are used routinely in optimal control problems,
especially terminal constraints (i.e., point constraints defined at terminal time). As just an
example, an inequality terminal constraint of the form

ψ(tf,x(tf)) ≤ 0

may arise in a stabilization problems, e.g., for forcing the system’s response to belong to
a given target set at terminal time; another typical example is that of a process changeover
where the objective is to bring the system from its actual steady state to a new steady state,

ψ′(tf,x(tf)) = 0.

Isoperimetric Constraints. Like problems of the calculus of variations, optimal control
problems may have constraints involving the integral of a given functional over the time
interval [t0, tf] (or some subinterval of it),

∫ tf

t0

h(t,x(t),u(t)) dt ≤ C.

Clearly, a problem with isoperimetric constraints can be readily reformulated into an equiv-
alent problem with point constraints only by invoking the transformation used previously
in � 3.2.3 for rewriting a Lagrange problem into the Mayer form.

Path Constraints. This last type of constraints is encountered in many optimal control
problems. Path constraints may be defined for restricting the range of values taken by mixed
functions of both the control and the state variables. Moreover, such restrictions can be
imposed over the entire time interval [t0, tf] or any (nonempty) time subinterval, e.g., for
safety reasons. For example, a path constraint could be define as

φ(t,x(t),u(t)) ≤ 0, ∀t ∈ [t0, tf],

hence restricting the points in phase space to a certain region X ⊂ IRnx at all times. In
general, a distinction is made between those path constraints depending explicitly on the
control variables, and those depending only on the state variables (“pure” state constraints)
such as

xk(t) ≤ xU , ∀t ∈ [t0, tf],

for some k ∈ {1, . . . , nx}. This latter type of constraints being much more problematic to
handle.

Constrained optimal control problems lead naturally to the concepts of feasible control
and feasible pair:

Definition 3.3 (Feasible Control, Feasible Pair). An admissible control ū(·) ∈ U[t0, tf]
is said to be feasible, provided that (i) the response x̄(·;x0,u(·)) is defined on the entire
interval t0 ≤ t ≤ tf, and (ii) ū(·) and x̄(·;x0,u(·)) satisfy all of the physical (point and
path) constraints during this time interval; the pair (ū(·), x̄(·)) is then called a feasible
pair. The set of feasible controls, Ω[t0, tf], is defined as

Ω[t0, tf] := {u(·) ∈ U[t0, tf] : u(·) feasible} .
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Example 3.4 (Simple Car Control Problem). Consider the control problem to drive a car,
initially park at p0, to a fixed pre-assigned destination pf in a straight line (see Fig.3.2.).
Here, t denotes time and p(t) represents the position of the car at a given t.

To keep the problem as simple as possible, we approximate the car by a unit point mass
that can be accelerated by using the throttle or decelerated by using the brake; the control
u(t) thus represents the force on the car due to either accelerating (u(t) ≥ 0) or decelerating
(u(t) ≤ 0) the car. Here, the control region U is specified as

U := {u ∈ IR : uL ≤ u(t) ≤ uU},

with uL < 0 < uU , based on the acceleration and braking capabilities of the vehicle.
As the state, we choose the 2-vector x(t) := (p(t), ṗ(t)); the physical reason for using

a 2-vector is that we want to know (i) where we are, and (ii) how fast we are going. By
neglecting friction, the dynamics of our system can be expressed based on Newton’s second
law of motion as p̈(t) = u(t). Rewriting this equation in the vector form, we get

ẋ(t) =

[

0 1
0 0

]

x(t) +

[

0
1

]

u(t). (3.5)

This is a mathematical model of the process in state form. Moreover, assuming that the car
starts from rest, we have

x(t0) =

[

p0

0

]

. (3.6)

The control problem being to bring the car at pf at rest, we impose terminal constraints
as

x(tf)−
[

pf
0

]

= 0.

In addition, if the car starts with G litters of gas and there are no service stations on the
way, another constraints is

∫ tf

t0

[k1u(t) + k2x2(t)] dt ≤ G,

which assumes that the rate of gas consumption is proportional to both acceleration and
speed with constants of proportionality k1 and k2.

Finally, we turn to the selection of a performance measure. Suppose that the objective
is to make the car reach point pf as quickly as possible; then, the performance measure J is
given by

J := tf − t0 =

∫ tf

t0

dt.

An alternative criterion could be to minimize the amount of fuel expended.

3.2.5 Optimality Criteria

Having defined a performance criterion, the set of physical constraints to be satisfied, and
the set of admissible controls, one can then state the optimal control problem as follows:
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Figure 3.2. A simple control problem.

“find an admissible control u? ∈ U[t0, tf] which satisfies the physical constraints in such a
manner that the cost functional J(u?) has a minimum value.”

Similar to problems of the calculus of variations (see � 2.3), we shall say that J assumes
its minimum value at u? provided that

J(u?) ≤ J(u), ∀u ∈ Ω[t0, tf].

This assignment is global in nature and does not require consideration of a norm.
On the other hand, a description of the local minima of J, namely

∃δ > 0 such that J(u?) ≤ J(u), ∀u ∈ Bδ (u?) ∩ Ω[t0, tf],

requires that a norm (or, more generally, a distance) be specified. Having chosen the class
of controls to be piecewise continuous functions, a possible choice is

‖u‖∞ := sup
t∈S

N
k=0

(θk,θk+1)

‖u(t)‖,

with t0 = θ0 < θ1 < · · · < θN < θN+1 = tf being a suitable partition for u. This
norm appears to be a natural choice, since (Ĉ [t0, tf]nu , ‖ · ‖∞) is a Banach space. Under
the additional assumption that the controls are continuously differentiable between two
successive discontinuities [θk, θk+1], k = 0, . . . , N (see Definition 3.1), another possible
norm is

‖u‖1,∞ := sup
t∈

S

N
k=0

(θk,θk+1)

‖u(t)‖+ sup
t∈

S

N
k=0

(θk,θk+1)

‖u̇(t)‖.

3.2.6 Open-Loop vs. Closed-Loop Optimal Control

One of the ultimate goals of optimal control is synthesize an optimal control law, which can
be used at any time t and for any (feasible) state value at t:

Definition 3.5 (Closed-Loop Optimal Control). If a functional relation of the form

u?(t) = ω (t,x(t)) (3.7)

can be found for the optimal control at time t, thenω is called a closed-loop optimal control
for the problem. (The terms optimal feedback control or optimal control law are also often
used.)

In general, the question of the very existence of a synthesizing control is rather com-
plicated. Interestingly enough, this question has a positive answer for linear ODE systems
under certain additional assumptions of an extremely general character (see � 3.5). In this
case, an optimal feedback can be found in the form of a linear time-varying control law,

u?(t) = −K(t)x(t).
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Obtaining a so-called open-loop optimal control law is much easier from a practical
viewpoint:

Definition 3.6 (Open-Loop Optimal Control). If the optimal control law is determined
as a function of time for a specified initial state value, that is,

u?(t) = ω (t,x(t0)) , (3.8)

then the optimal control is said to be in open-loop form.

Therefore, an open-loop optimal control is optimal only for a particular initial state value,
whereas, if an optimal control law is known, the optimal control history can be generated
from any initial state. Conceptually, it is helpful to think off the difference between an
optimal control law and an open-loop optimal control as shown in Fig. 3.3. below.

PSfrag replacements

ControllerController ProcessProcess

a. Open-loop optimal control b. Closed-loop optimal control

u?(t) u?(t) x(t)x(t)

opens at t0

Figure 3.3. Open-loop vs. closed-loop optimal control.

Throughout this chapter, we shall mostly consider open-loop optimal control problems,
also referred to as dynamic optimization problems in the literature. Note that open-loop
optimal controls are rarely applied directly in practice due to the presence of uncertainty
(such as model mismatch, process disturbance and variation in initial condition), which
can make the system operate sub-optimally or, worse, lead to infeasible operation due to
constraints violation. Yet, the knowledge of an open-loop optimal control law for a given
process can provide valuable insight on how to improve system operation as well as some
idea on how much can be gained upon optimization. Moreover, open-loop optimal controls
are routinely used in a number of feedback control algorithms such as model predictive
control (MPC) and repeated optimization [1, 42]. The knowledge of an open-loop optimal
solution is also pivotal to many implicit optimization schemes including NCO tracking
[51, 52].

3.3 EXISTENCE OF AN OPTIMAL CONTROL

Since optimal control problems encompass problems of the calculus of variations, difficul-
ties are to be expected regarding the existence of a solution (see � 2.4). Apart from the rather
obvious case where no feasible control exists for the problem, the absence of an optimal
control mostly lies in the fact that many feasible control sets of interest fail to be compact.

Observe first that when the ODEs have finite escape time for certain admissible controls,
the cost functional can be unbounded. One particular sufficient condition for the solutions
of ODEs to be extended indefinitely, as given by Theorem A.52 in Appendix A.5.1, is that
the responses satisfy an a priori bound

‖x(t;x0,u(·))‖ ≤ α, ∀t ≥ t0,

for every feasible control. In particular, the responses of a linear system ẋ = A(t,u)x +
b(t,u), from a fixed initial state, cannot have a finite escape time.
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Observe next that when the time interval is unbounded, the corresponding set of feasible
controls is itself unbounded, and hence not compact. Therefore, care should always be
taken so that the operation be restricted to a compact time interval, e.g., [t0, T ], where T is
chosen so large that Ω[t0, tf] 6= ∅ for some tf ∈ [t0, T ]. These considerations are illustrated
in an example below.

Example 3.7. Consider the car control problem described in Example 3.4,with the objective
to find (u(·), tf) ∈ Ĉ[t0,∞) × [t0,∞) such that pf is reached within minimal amount of
fuel expended:

min
u(·),tf

J(u, tf) :=

∫ tf

t0

[u(t)]2 dt

s.t. Equations (3.5, 3.6)

x1(tf)− pf = 0

0 ≤ u(t) ≤ 1, ∀t.

The state trajectories being continuous and pf > p0, u(t) ≡ 0 is infeasible and J(u) > 0
for every feasible control.

Now, consider the sequence of (constant) admissible controls uk(t) = 1
k

, t ≥ t0, k ≥ 1.
The response xk(t), t ≥ t0, is easily calculated as

x1(t) =
1

2k
(t− t0)2 + p0(t− t0)

x2(t) =
1

k
(t− t0) + p0,

and the target pf is first reached at

tkf = t0 + 4k

(

√

p2
0 +

2

k
pf − p0

)

.

Hence, uk ∈ Ω[t0, t
k
f ], and we have

J(uk) =

∫ tkf

t0

1

k2
dt =

4

k

(

√

p2
0 +

2

k
pf − p0

)

−→ 0,

as k → +∞. That is, inf J(u) = 0, i.e., the problem does not have a minimum.

Even when the time horizon is finite and the system response is bounded for every
feasible control, an optimal control may not exist. This is because, similar to problems of
the calculus of variations, the sets of interest are too big to be compact. This is illustrated
subsequently in an example.

Example 3.8. Consider the problem to minimize the functional

J(u) :=

∫ 1

0

√

x(t)2 + u(t)2 dt,
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for u ∈ C [0, 1], subject to the terminal constraint

x(1) = 1,

where the response x(t) is given by the linear initial value problem,

ẋ(t) = u(t); x(0) = 0.

Observe that the above optimal control problem is equivalent to that of minimizing the
functional

J(x) :=

∫ 1

0

√

x(t)2 + ẋ(t)2 dt,

on D := {x ∈ C1[0, 1] : x(0) = 0, x(1) = 1}. But since this variational problem does not
have a solution (see Example 2.5, p. 68), it should be clear that the former optimal control
problem does not have a solution either.

For a optimal control to exist, additional restrictions must be placed on the class of
admissible controls. Two such possible classes of controls are:

(i) the class Uλ[t0, tf] ⊂ U[t0, tf] of controls which satisfy a Lipschitz condition:

‖u(t)− u(s)‖ ≤ λ‖t− s‖ ∀t, s ∈ [t0, tf];

(ii) the class Ur[t0, tf] ⊂ U[t0, tf] of piecewise constant controls with at most r points of
discontinuity.

Existence can also be guaranteed without restricting the controls, provided that certain
convexity assumptions hold.

3.4 VARIATIONAL APPROACH

Sufficient condition for an optimal control problem to have a solution, such as those dis-
cussed in the previous section, while reassuring, are not at all useful in helping us find
solutions. In this section (and the next section), we shall describe a set of conditions which
any optimal control must necessarily satisfy. For many optimal control problems, such
conditions allow to single out a small subset of controls, sometimes even a single control.
There is thus reasonable chance of finding an optimal control, if one exists, among these
candidates. However, it should be reemphasized that necessary conditions may delineate a
nonempty set of candidates, even though an optimal control does not exist for the problem.

In this section, we shall consider optimal control problems having no restriction on the
control variables (i.e., the control region U corresponds to IRnu) as well as on the state
variables. More general optimal control problems with control and state path constraints,
shall be considered later on in � 3.5.

3.4.1 Euler-Lagrange Equations

We saw in � 2.5.2 that the simplest problem of the calculus of variations has both its endpoints
fixed. In optimal control, on the other hand, the simplest problem involves a free value of
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the state variables at the right endpoint (terminal time):

minimize:
∫ tf

t0

`(t,x(t),u(t)) dt (3.9)

subject to: ẋ(t) =f (t,x(t),u(t)); x(t0) = x0, (3.10)

with fixed initial time t0 and terminal time tf. A control function u(t), t0 ≤ t ≤ tf, together
with the initial value problem (3.10), determines the response x(t), t0 ≤ t ≤ tf (provided
it exists). Thus, we may speak of finding a control, since the corresponding response is
implied.

To develop first-order necessary conditions in problems of the calculus of variations
(Euler’s equation), we constructed a one-parameter family of comparison trajectories
x(t) + ηξ(t), with ξ ∈ C1[t0, tf]

nx such that ‖ξ‖1,∞ ≤ δ (see Theorem 2.14 and proof).
However, when it comes to optimal control problems such as (3.9,3.10), a variation of the
state trajectory x cannot be explicitely related to a variation of the control u, in general,
because the state and control variables are implicitly related by the (nonlinear) differential
equation (3.10). Instead, we shall consider a one-parameter family of comparison trajec-
tories u(t) + ηω(t), with ω ∈ C [t0, tf]nu such that ‖ω‖∞ ≤ δ. Then, analogous to the
proof of Theorem 2.14, we shall use the geometric characterization for a local minimizer
of a functional on a subset of a normed linear space as given by Theorem 2.13. These
considerations lead to the following:

Theorem 3.9 (First-Order Necessary Conditions). Consider the problem to minimize the
functional

J(u) :=

∫ tf

t0

`(t,x(t),u(t)) dt, (3.11)

subject to

ẋ(t) =f(t,x(t),u(t)); x(t0) = x0, (3.12)

for u ∈ C [t0, tf]nu , with fixed endpoints t0 < tf, where ` and f are continuous in (t,x,u)
and have continuous first partial derivatives with respect to x and u for all (t,x,u) ∈
[t0, tf]× IRnx × IRnu . Suppose that u? ∈ C [t0, tf]nu is a (local) minimizer for the problem,
and letx? ∈ C1[t0, tf]

nx denote the corresponding response. Then, there is a vector function
λ? ∈ C1[t0, tf]

nx such that the triple (u?,x?,λ?) satisfies the system

ẋ(t) =f(t,x(t),u(t)); x(t0) =x0 (3.13)

λ̇(t) =− `x(t,x(t),u(t))− fx(t,x(t),u(t))
T
λ(t); λ(tf) =0 (3.14)

0 =`u(t,x(t),u(t)) + fu(t,x(t),u(t))T
λ(t). (3.15)

for t0 ≤ t ≤ tf. These equations are known collectively as the Euler-Lagrange equations,
and (3.14) is often referred to as the adjoint equation (or the costate equation).

Proof. Consider a one-parameter family of comparison controls v(t; η) := u?(t)+ ηω(t),
whereω(t) ∈ C [t0, tf]nu is some fixed function, and η is a (scalar) parameter. Based on the
continuity and differentiability properties of f , we know that there exists η̄ > 0 such that the
response y(t; η) ∈ C1[t0, tf]

nx associated to v(t; η) through (3.12) exists, is unique, and is
differentiable with respect to η, for all η ∈ Bη̄ (0) and for all t ∈ [t0, tf] (see Appendix A.5).
Clearly, η = 0 provides the optimal response y(t; 0) ≡ x?(t), t0 ≤ t ≤ tf.
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Since the control v(t; η) is admissible and its associated response is y(t, η), we have

J(v(·; η)) =

∫ tf

t0

[

`(t,y(t; η),v(t; η)) + λ(t)
T
[f(t,y(t; η),v(t; η)) − ẏ(t; η)]

]

dt

=

∫ tf

t0

[

`(t,y(t; η),v(t; η)) + λ(t)
T
f(t,y(t; η),v(t; η)) + λ̇(t)

T
y(t; η)

]

dt

− λ(tf)
T
y(tf; η) + λ(t0)

T
y(t0; η),

for any λ ∈ C1[t0, tf]
nx and for each η ∈ Bη̄ (0). Based on the differentiability properties

of ` and y, and by Theorem 2.A.59, we have

∂

∂η
J(v(·; η)) =

∫ tf

t0

[

`u(t,y(t; η),v(t; η)) + fu(t,y(t; η),v(t; η))T
λ(t)

]T
ω(t) dt

+

∫ tf

t0

[

`x(t,y(t; η),v(t; η)) + fx(t,y(t; η),v(t; η))
T
λ(t) + λ̇(t)

]T
yη(t; η) dt

− λ(tf)
Tyη(tf; η) + λ(t0)

Tyη(t0; η),

for any ω ∈ C [t0, tf]nu and any λ ∈ C1[t0, tf]
nx . Taking the limit as η → 0, and since

yη(t0; η) = 0, we get

δJ(u?;ω) =

∫ tf

t0

[

`u(t,x?(t),u?(t)) + fu(t,x?(t),u?(t))
T
λ(t)

]T
ω(t) dt

+

∫ tf

t0

[

`x(t,x?(t),u?(t)) + fx(t,x?(t),u?(t))
T
λ(t) + λ̇(t)

]T
yη(t; 0) dt

− λ(tf)
T
yη(tf; 0),

which is finite for each ω ∈ C [t0, tf]nu and each λ ∈ C1[t0, tf]
nx , since the integrand

is continuous on [t0, tf]. That is, δJ(u?;ω) exists for each ω ∈ C [t0, tf]nu and each
λ ∈ C1[t0, tf]

nx .
Now, u? being a local minimizer, by Theorem 2.13,

0 =

∫ tf

t0

[

`?x + f?x
T
λ(t) + λ̇(t)

]T
yη(t; 0) +

[

`?u + f?u
T
λ(t)

]T
ω(t) dt− λ(tf)

T
yη(tf; 0),

for each ω ∈ C [t0, tf]nu and each λ ∈ C1[t0, tf]
nx , where the compressed notations `?z :=

`z(t,x
?(t),u?(t)) and f?z := fz(t,x

?(t),u?(t)) are used.
Because the effect of a variation of the control on the course of the response is hard

to determine (i.e., yη(t; 0)), we choose λ?(t), t0 ≤ t ≤ tf, so as to obey the differential
equation

λ̇(t) =− f?x
T
λ(t)− `?x, (3.16)

with the terminal conditionλ(tf) = 0. Note that (3.16) being a linear system of ODEs, and
from the regularity assumptions on ` and f , the solution λ? exists and is unique over [t0, tf]
(see Theorem A.50, p. xiv), i.e., λ ∈ C1[t0, tf]

nx . That is, the condition

0 =

∫ tf

t0

[

`?u + f?u
T
λ?(t)

]T
ω(t) dt,
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must hold for anyω ∈ C [t0, tf]nu . In particular, forω(t) such thatωi(t) := `?ui+f?ui
T
λ?(t)

and ωj(t) = 0 for j 6= i, we get

0 =

∫ tf

t0

[

`?ui + f?ui
T
λ?(t)

]2

dt,

for each i = 1, . . . , nx, which in turn implies the necessary condition that

0 = `ui(t,x
?(t),u?(t)) + fui(t,x

?(t),u?(t))
T
λ?(t), i = 1, . . . , nx,

for each t ∈ [t0, tf].

Some comments are in order before we look at an example.

◦ The optimality conditions consist of nu algebraic equations (3.15), together with
2 × nx ODEs (3.13,3.14) and their respective boundary conditions. Hence, the
Euler-Lagrange equations provide a complete set of necessary conditions. However,
the boundary conditions for (3.13) and (3.14) are split, i.e., some are given at t = t0
and others at t = tf. Such problems are known as two-point boundary value problems
(TPBVPs) and are notably more difficult to solve than IVPs.

◦ In the special case where f(t,x(t),u(t)) := u(t), with nu = nx, (3.15) gives

λ?(t) = −`u(t,x?(t),u?(t)).

Then, from (3.14), we obtain the Euler equation

d
dt
`u(t,x?(t), ẋ?(t)) = `x(t,x?(t), ẋ?(t)),

together with the natural boundary condition

[`u(t,x?(t), ẋ?(t))]t=tf
= 0.

Hence, the Euler-Lagrange equations encompass the necessary conditions of opti-
mality derived previously for problems of the calculus of variations (see � 2.5).

◦ It is convenient to introduce the Hamiltonian functionH : IR× IRnx× IRnu× IRnx →
IR associated with the optimal control problem (3.9,3.10), by adjoining the right-hand
side of the differential equations to the cost integrand as

H(t,x,u,λ) = `(t,x,u) + λTf(t,x,u). (3.17)

Thus, Euler-Lagrange equations (3.13–3.15) can be rewritten as

ẋ(t) = Hλ; x(t0) = x0 (3.13’)

λ̇(t) = −Hx; λ(tf) = 0 (3.14’)
0 = Hu, (3.15’)

for t0 ≤ t ≤ tf. Note that a necessary condition for the triple (u?,x?,λ?) to give a
local minimum of J is that u?(t) be a stationary point of the Hamiltonian function
with x?(t) and λ?(t), at each t ∈ [t0, tf]. In some cases, one can express u(t) as a
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function of x(t) and λ(t) from (3.15’), and then substitute into (3.13’,3.14’) to get a
TPBVP in the variables x and λ only (see Example 3.10 below).

◦ The variation of the Hamiltonian function along an optimal trajectory is given by

d
dt
H = Ht +HT

xẋ +HT
uu̇ + fTλ̇ = Ht +HT

uu̇ + fT
[

Hx + λ̇
]

= Ht.

Hence, if neither ` nor f depend explicitly on t, we get d
dtH ≡ 0, henceH is constant

along an optimal trajectory; in other words, H yields a first integral to the TPBVP
(3.13’–3.15’).

◦ The Euler-Lagrange equations (3.13’–3.15’) are necessary conditions both for
a minimization and for a maximization problem. Yet, in a minimiza-
tion problem, u?(t) must minimize H(t,x?(t), ·,λ?(t)), i.e., the condition
Huu(t,x?(t),u?(t),λ?(t)) ≥ 0 is also necessary. On the other hand, the additional
conditionHuu(t,x?(t),u?(t),λ?(t)) ≤ 0 is necessary in a maximization problem.
These latter conditions have not yet been established and shall be discussed later on.

Example 3.10. Consider the optimal control problem

minimize: J(u) :=

∫ 1

0

[

1
2u(t)

2 − x(t)
]

dt (3.18)

subject to: ẋ(t) = 2 [1− u(t)] ; x(0) = 1. (3.19)

To find candidate optimal controls for the problem (3.18,3.19), we start by forming the
Hamiltonian function

H(x, u, λ) = 1
2u

2 − x+ 2λ(1− u).
Candidate solutions (u?, x?, λ?) are those satisfying the Euler-Lagrange equations, i.e.,

ẋ?(t) = Hλ = 2 [1− u?(t)] ; x?(0) = 1

λ̇?(t) = −Hx = 1; λ?(1) = 0

0 = Hu = u?(t)− 2λ?(t).

The adjoint equation trivially yields

λ?(t) = t− 1,

and from the optimality condition, we get

u?(t) = 2(t− 1).

(Note that u? is indeed a candidate minimum solution for the problem since Huu = 1 > 0
for each 0 ≤ t ≤ 1.) Finally, substituting the optimal control candidate back into (3.19)
yields

ẋ?(t) = 6− 4t; x?(0) = 1.

Integrating the latter equation, and drawing the results together, we obtain

u?(t) = 2(t− 1) (3.20)

x?(t) = − 2t2 + 6t+ 1 (3.21)
λ?(t) = t− 1. (3.22)
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It is also readily verified that H is constant along the optimal trajectory,

H(t, x?(t), u?(t), λ?(t)) = −5.

Finally, we illustrate the optimality of the controlu? by considering the modified controls
v(t; η) := u?(t)+ηω(t), and their associated responses y(t; η). The perturbed cost function
reads:

J(v(t; η)) :=

∫ 1

0

[

1

2
[u?(t) + ηω(t)]2 − y(t; η)

]

dt

s.t. ẏ(t; η) = 2 [1− u?(t)− ηω(t)] ; x(0) = 1.

The cost function J(v(t; η)) is represented in Fig. 3.4. for different perturbationsω(t) = tk,
k = 0, . . . , 4. Note that the minimum of J(v(t; η)) is always attained at η = 0.
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Figure 3.4. Function J(v(t; η)) for various perturbations ω(t) = tk, k = 0, . . . , 4, in
Example 3.10.

3.4.2 Mangasarian Sufficient Conditions

In essence, searching for a control u? that minimizes the performance measure J means
that J(u?) ≤ J(u), for all admissible u. That is, what we want to determine is the global
minimum value of J, not merely local minima. (Remind that there may actually be several
global optimal controls, i.e., distinct controls achieving the global minimum of J.) Condi-
tions under which the necessary conditions (3.13’–3.15’) are also sufficient for optimality,
i.e., provide a global optimal control are given by the following:

Theorem 3.11 (Mangasarian Sufficient Condition). Consider the problem to minimize
the functional

J(u) :=

∫ tf

t0

`(t,x(t),u(t)) dt, (3.23)

subject to

ẋ(t) =f(t,x(t),u(t)); x(t0) = x0, (3.24)
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for u ∈ C [t0, tf]nu , with fixed endpoints t0 < tf, where ` and f are continuous in (t,x,u),
have continuous first partial derivatives with respect to x and u, and are [strictly] jointly
convex in x and u, for all (t,x,u) ∈ [t0, tf] × IRnx × IRnu . Suppose that the triple
u? ∈ C [t0, tf]nu , x? ∈ C1[t0, tf]

nx and λ? ∈ C1[t0, tf]
nx satisfies the Euler-Lagrange

equations (3.13–3.15). Suppose also that

λ?(t) ≥ 0, (3.25)

for all t ∈ [t0, tf]. Then, u? is a [strict] global minimizer for the problem (3.23,3.24).

Proof. ` being jointly convex in (x,u), for any feasible controluand its associated response
x, we have

J(u)− J(u?) =

∫ tf

t0

[`(t,x(t),u(t)) − `(t,x?(t),u?(t))] dt

≥
∫ tf

t0

(

`?x
T [x(t)− x?(t)] + `?u

T [u(t)− u?(t)]
)

dt,

with the usual compressed notation. Since the triple (u?,x?,λ?) satisfies the Euler-
Lagrange equations (3.13–3.15), we obtain

J(u)− J(u?) ≥
∫ tf

t0

(

−
[

f?x
T
λ?(t) + λ̇

?
(t)
]T

[x(t) − x?(t)]

−
[

f?u
T
λ?(t)

]T
[u(t)− u?(t)]

)

dt,

Integrating by part the term in λ̇
?
(t), and rearranging the terms, we get

J(u)− J(u?) ≥
∫ tf

t0

λ?(t)
T
(f(t,x(t),u(t))− f (t,x?(t),u?(t))− f ?x [x(t)− x?(t)]

−f?u [u(t)− u?(t)]) dt

− λ?(tf)T
[x(tf)− x?(tf)] + λ?(t0)

T
[x(t0)− x?(t0)] .

Note that the integrand is positive due to (3.25) and the joint convexity of f in (x,u); the
remaining two terms are equal to zero due to the optimal adjoint boundary conditions and
the prescribed state initial conditions, respectively. That is,

J(u) ≥ J(u?),

for each feasible control.

Remark 3.12. In the special case where f is linear in (x,u), the result holds without any
sign restriction for the costatesλ?(t). Further, if ` is jointly convex in (x,u) andϕ is convex
in x, while f is jointly concave in (x,u) and λ?(t) ≤ 0, then the necessary conditions are
also sufficient for optimality.

Remark 3.13. The Mangasarian sufficient conditions have limited applicability for, in most
practical problems, either the terminal cost, the integral cost, or the differential equations
fail to be convex or concave. 2

2A less restrictive sufficient condition, known as the Arrow sufficient condition, ’only’ requires that the function
M(t,x, λ?) := minu∈U H(t,x,u,λ?), i.e., the minimized Hamiltonian with respect to u ∈ U , be a convex
function in x. See, e.g., [49] for a survey of sufficient conditions in optimal control theory.
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Example 3.14. Consider the optimal control problem (3.18,3.19) in Example 3.10. The in-
tegrand is jointly convex in (u, x) on IR2, and the right-hand side of the differential equation
is linear in u (and independent of x). Moreover, the candidate solution (u?(t), x?(t), λ?)
given by (3.20–3.22) satisfies the Euler-Lagrange equations (3.13–3.15), for each t ∈ [0, 1].
Therefore,u?(t) is a global minimizer for the problem (irrespective of the sign of the adjoint
variable due to the linearity of (3.19), see Remark 3.12).

3.4.3 Piecewise Continuous Extremals

It may sometimes occur that a continuous control u ∈ C [t0, tf]nu satisfying the Euler-
Lagrange equations cannot be found for a particular optimal control problem. It is then
natural to wonder whether such problems have extremals in the larger class of piecewise
continuous controls Ĉ [t0, tf]nu (see Definition 3.1). It is also natural to seek improved
results in the class of piecewise continuous controls, even though a continuous control
satisfying the Euler-Lagrange equations could be found. Discontinuous controls give rise
to discontinuities in the slope of the response (i.e., x ∈ Ĉ1[t0, tf]), and are referred to
as corner points (or simply corners) by analogy to classical problems of the calculus of
variations (see � 2.6). The purpose of this subsection is to summarize the conditions that
must hold at the corner points of an optimal solution.

Consider an optimal control problem of the form (3.9,3.10), and suppose that û? ∈
Ĉ [t0, tf] is an optimal control for that problem, with associated response x̂? and adjoint λ̂

?
.

Then, at every possible corner point θ ∈ (t0, tf) of û?, we have

x̂?(θ−) = x̂?(θ+) (3.26)

λ̂
?
(θ−) = λ̂

?
(θ+) (3.27)

H(θ−, x̂?(θ), û?(θ−), λ̂
?
(θ)) = H(θ+, x̂?(θ), û?(θ+), λ̂

?
(θ)), (3.28)

where θ− and θ+ denote the time just before and just after the corner, respectively; z(θ−)
and z(θ+) denote the left and right limit values of a quantity z at θ, respectively.

Remark 3.15 (Link to the Weierstrass-Erdmann Corner Conditions). It is readily
shown that the corner conditions (3.27)and (3.28)are equivalent to the Weierstrass-Erdmann
conditions (2.23) and (2.24) in classical problems of the calculus of variations.

Although corners in optimal control trajectories are more common in problems hav-
ing inequality path constraints (either input or state constraints), the following example
illustrates that problems without path inequality constraint may also exhibit corners.

Example 3.16. Consider the optimal control problem

minimize: J(u) :=

∫ 1

0

[

u(t)2 − u(t)4 − x(t)
]

dt (3.29)

subject to: ẋ(t) = −u(t); x(0) = 1 (3.30)

The Hamiltonian function for this problem reads

H(x, u, λ) = u2 − u4 − x− λu.
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Candidate optimal solutions (u?, x?, λ?) are those satisfying the Euler-Lagrange equations

ẋ(t) = Hλ = u(t); x(0) = 1

λ̇(t) = −Hx = 1; λ?(1) = 0 (3.31)

0 = Hu = 2u(t)− 4u(t)3 − λ(t). (3.32)

The adjoint equation (3.31) has solution λ?(t) = t−1, 0 ≤ t ≤ 1, which upon substitution
into (3.32) yields

2u?(t)− 4u?(t)3 = t− 1.

Values of the control variable u(t), 0 ≤ t ≤ 1, satisfying the former condition are shown
in Fig. 3.16 below. Note that for there is a unique solution u1(t) to the Euler-Lagrange
equations for 0 ≤ t / 0.455, then 3 possible solutions u1(t), u2(t), and u3(t) exist for
0.455 / t ≤ 1. That is, candidate optimal controls start with the value u?(t) = u1(t) until
t ≈ 0.455. Then, the optimal control may be discontinuous and switch between u1(t),
u2(t), and u3(t). Note, however, that a discontinuity can only occur at those time instants
where the corner condition (3.28) is satisfied.
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Figure 3.5. Values of the control variable u(t), 0 ≤ t ≤ 1, satisfying the Euler-Lagrange equations
in Example 3.16.

3.4.4 Interpretation of the Adjoint Variables

We saw in Chapter 1 on nonlinear programming that the Lagrange multiplier associated
to a particular constraint can be interpreted as the sensitivity of the objective function to a
change in that constraint (see Remark 1.61, p. 30). Our objective in this subsection is to
obtain a useful interpretation of the adjoint variables λ(t) which are associated to the state
variables x(t).

Throughout this subsection, we consider an optimal control problem of the following
form

minimize: J(u) =

∫ tf

t0

`(t,x(t),u(t)) dt (3.33)

subject to: ẋ(t) = f(t,x(t),u(t)); x(t0) = x0, (3.34)
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with fixed initial time t0 and terminal time tf, where ` and f are continuous in (t,x,u),
and have continuous first partial derivatives with respect to x and u, for all (t,x,u) ∈
[t0, tf]× IRnx × IRnu . Let V(x0, t0) denote the minimum value of J(u), for a given initial
state x0 at t0. For simplicity, suppose that u? ∈ C [t0, tf]nu is the unique control providing
this minimum, and let x? ∈ C1[t0, tf]

nx and λ? ∈ C1[t0, tf]
nx denote the corresponding

response and adjoint trajectories, respectively.
Now, consider a modification of the optimal control problem (3.33,3.34) in which the

initial state is x0 + ξ, with ξ ∈ IRnx . Suppose that a unique optimal control, v(t; ξ), exists
for the perturbed problem for each ξ ∈ Bδ (0), with δ > 0, and let y(t; ξ) denote the
corresponding optimal response, i.e.,

ẏ(t; ξ) = f(t,y(t; ξ),v(t; ξ)); y(t0; ξ) = x0 + ξ.

Clearly, v(t;0) = u?(t) and y(t;0) = x?(t), for t0 ≤ t ≤ tf. Suppose further that the
functions v(t; ξ) and y(t; ξ) are continuously differentiable with respect to ξ on Bδ (0).

Appending the differential equation (3.34) in (3.33) with the adjoint variable λ?, we
have

V(y(t0; ξ), t0) :=

∫ tf

t0

`(t,y(t; ξ),v(t; ξ)) dt

=

∫ tf

t0

(

`(t,y(t; ξ),v(t; ξ)) + λ?(t)
T
[f(t,y(t; ξ),v(t; ξ))− ẏ(t; ξ)]

)

dt.

Then, upon differentiation of V(x0 + ξ, t0) with respect to ξ, we obtain

∂

∂ξ
V(y(t0; ξ), t0) =

∫ tf

t0

[

`u(t,y(t; ξ),v(t; ξ)) + λ?(t)
T
fu(t,y(t; ξ),v(t; ξ))

]T
vξ(t; ξ) dt

+

∫ tf

t0

[

`x(t,y(t; ξ),v(t; ξ)) + λ?(t)
T
fx(t,y(t; ξ),v(t; ξ)) + λ̇

?
(t)
]T

yξ(t; ξ) dt

− λ?(tf)T
yξ(tf; ξ) + λ?(t0)

T
yξ(t0; ξ),

and taking the limit as ξ → 0 yields

∂

∂ξ
V(v(t0;ξ), t0)

∣

∣

∣

∣

ξ=0

=

∫ tf

t0

[

`u(t,x?(t),u?(t)) + λ?(t)
T
fu(t,x?(t),u?(t))

]T
vξ(t;0) dt

+

∫ tf

t0

[

`x(t,x?(t),u?(t)) + λ?(t)
T
fx(t,x?(t),u?(t)) + λ̇

?
(t)
]T

yξ(t;0) dt

− λ?(tf)T
yξ(tf;0) + λ?(t0)

T
yξ(t0;0).

Finally, noting that the triple (u?,x?,λ?) satisfies the Euler-Lagrange equations (3.13–
3.15), and since v(t0; ξ) = Inx , we are left with

λ?(t0) =
∂

∂ξ
V(v(t0; ξ), t0)

∣

∣

∣

∣

ξ=0

= Vx(x0, t0). (3.35)

That is, the adjoint variable λ(t0) at initial time can be interpreted as the sensitivity of the
cost functional to a change in the initial condition x0. In other words, λ(t0) represents the
marginal valuation in the optimal control problem of the state at initial time.
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The discussion thus far has only considered the adjoint variables at initial time. We shall
now turn to the interpretation of the adjoint variables λ(t) at any time t0 ≤ t ≤ tf. We
start by proving the so-called principle of optimality, which asserts that any restriction on
[t1, tf] of an optimal control on [t0, tf] is itself optimal, for any t1 ≥ t0.

Lemma 3.17 (Principle of Optimality). Let u? ∈ Ĉ [t0, tf]nu be an optimal control for the
problem to

minimize:
∫ tf

t0

`(t,x(t),u(t)) dt (3.36)

subject to: ẋ(t) = f(t,x(t),u(t)); x(t0) = x0, (3.37)

and let x? ∈ Ĉ1[t0, tf]
nx denote the corresponding optimal response. Then, for any t1 ∈

[t0, tf], the restriction u?(t), t1 ≤ t ≤ tf, is an optimal control for the problem to

minimize:
∫ tf

t1

`(t,x(t),u(t)) dt (3.38)

subject to: ẋ(t) = f(t,x(t),u(t)); x(t1) = x?(t1). (3.39)

Proof. Let V(x0, t0) denote the minimum values of the optimal control problem (3.36,3.37).
Clearly,

V(x0, t0) =

∫ t1

t0

`(t,x?(t),u?(t)) dt+
∫ tf

t1

`(t,x?(t),u?(t)) dt.

By contradiction, suppose that the restriction u?(t), t1 ≤ t ≤ tf, is not optimal for the
problem (3.38,3.39). Then, there exists a (feasible) control u†(t), t1 ≤ t ≤ tf, that imparts
to the functional (3.38) the value

∫ tf

t1

`(t,x†(t),u†(t)) dt <
∫ tf

t1

`(t,x?(t),u?(t)) dt.

Further, by joining u?(t), t0 ≤ t ≤ t1, and u†(t), t1 ≤ t ≤ tf, one obtains a piecewise
continuous control that is feasible and satisfies

∫ t1

t0

`(t,x?(t),u?(t)) dt+

∫ tf

t1

`(t,x†(t),u†(t)) dt < V(x0, t0),

hence contradicting the optimality of u?, t0 ≤ t ≤ tf, for the problem (3.36,3.37).

Back to the question of the interpretation of the adjoint variables, the method used to reach
(3.35) at initial time can be applied to the restricted optimal control problem (3.38,3.39),
which by Lemma 3.17 has optimal solution u?(t), t1 ≤ t ≤ tf. This method leads to the
result

λ?(t1) = Vx(x?(t1), t1),

and since the time t1 was arbitrary, we get

λ?(t) = Vx(x?(t), t), t0 ≤ t ≤ tf.

That is, if there were an exogenous, tiny perturbation to the state variable at time t and if the
control were modified optimally thereafter, the optimal cost value would change at the rate
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λ(t); said differently, λ(t) is the marginal valuation in the optimal control problem of the
state variable at time t. In particular, the optimal cost value remains unchanged in case of
an exogenous perturbation at terminal time tf, i.e., the rate of change is Vx(x?(tf), tf) = 0.
This interpretation confirms the natural boundary conditions of the adjoint variables in the
Euler-Lagrange equations (3.13–3.15).

3.4.5 General Terminal Constraints

So far, we have only considered optimal control problems with fixed initial time t0 and
terminal time tf, and free terminal state variables x(tf). However, many optimal control
problems do not fall into this formulation. Often, the terminal time is free (e.g., in minimum
time problems), and the state variables at final time are either fixed or constrained to lie on
a smooth manifold.

In this subsection, we shall consider problems having end-point constraints of the form
ψ(tf,x(tf)) = 0, with tf being specified or not. Besides terminal constraints, we shall also
add a terminal cost (or salvage term) φ(tf,x(tf)) to the cost functional, so that the problem
is now in the Bolza form. In the case of a free terminal time problem, tf shall be considered
an additional variable in the optimization problem. Similar to free end-point problems of
the calculus of variations (see, e.g., � 2.5.5 and � 2.7.3), we shall then define the optimization
horizon by extension on a “sufficiently” large interval [t0, T ], and consider the linear space
C [t0, T ]nu× IR, supplied with the norm ‖(u, t)‖∞ := ‖u‖∞+ |t|, as the class of admissible
controls for the problem.

In order to obtain necessary conditions of optimality for problems with terminal con-
straints, the idea is to apply the method of Lagrange multipliers described in � 2.7.1, by
specializing the normed linear space (X, ‖ · ‖) to (C [t0, T ]nu × IR, ‖(·, ·)‖∞) and consid-
ering the Gâteaux derivative δJ(u, tf;ω, τ) at any point (u, tf) and in any direction (ω, τ).
One such set of necessary conditions is given by the following:

Theorem 3.18 (Necessary Conditions for Problems having Equality Terminal Con-
straints). Consider the optimal control problem to

minimize: J(u, tf) :=

∫ tf

t0

`(t,x(t),u(t)) dt+ φ(tf,x(tf)) (3.40)

subject to: Pk(u, tf) := ψk(tf,x(tf)) = 0, k = 1, . . . , nψ (3.41)
ẋ(t) = f(t,x(t),u(t)); x(t0) = x0, (3.42)

for u ∈ C [t0, T ]nu , with fixed initial time t0 and free terminal time tf; ` and f are continuous
in (t,x,u) and have continuous first partial derivatives with respect to x and u for all
(t,x,u) ∈ [t0, T ]× IRnx × IRnu ; φ andψ are continuous and have continuous first partial
derivatives with respect to t and x for all (t,x) ∈ [t0, T ]× IRnx . Suppose that (u?, t?f ) ∈
C [t0, T ]nu× [t0, T ) is a (local) minimizer for the problem, and let x? ∈ C1[t0, T ]nx denote
the corresponding response. Suppose further that

∣

∣

∣

∣

∣

∣

∣

δP1(u
?, t?f ; ω̄1, τ̄1) · · · δP1(u

?, t?f ; ω̄nψ , τ̄nψ )
...

. . .
...

δPnψ (u?, t?f ; ω̄1, τ̄1) · · · δPnψ(u?, t?f ; ω̄nψ , τ̄nψ )

∣

∣

∣

∣

∣

∣

∣

6= 0, (3.43)

for nψ (independent) directions (ω̄1, τ̄1), . . . , (ω̄nψ , τ̄nψ ) ∈ C [t0, T ]nu × IR. Then, there
exist a function λ? ∈ C1[t0, T ]nx and a vector ν? ∈ IRnψ such that (u?,x?,λ?,ν?, t?f )
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satisfies the Euler-Lagrange equations

ẋ(t) =Hλ(t,x(t),u(t),λ(t)); x(t0) = x0 (3.44)

λ̇(t) = −Hx(t,x(t),u(t),λ(t)); λ(tf) = Φx(tf,x(tf)) (3.45)
0 =Hu(t,x(t),u(t),λ(t)), (3.46)

for all t0 ≤ t ≤ tf, along with the conditions

ψ(tf,x(tf)) = 0 (3.47)
Φt(tf,x(tf)) +H(tf,x(tf),u(tf),λ(tf)) = 0, (3.48)

with Φ := φ+ νTψ andH := `+ λTf .

Proof. Consider a one-parameter family of comparison controls v(t; η) := u?(t)+ ηω(t),
whereω(t) ∈ C [t0, T ]nu is some fixed function, and η is a (scalar) parameter. Let y(t; η) ∈
C1[t0, T ]nx be the response corresponding to v(t; η) through (3.42). In particular, η = 0
provides the optimal response y(t; 0) ≡ x?(t), t0 ≤ t ≤ tf.

We show, as in the proof of Theorem 3.9, that the Gâteaux variation at (u?, t?f ) in any
direction (ω, τ) ∈ C [t0, T ]nu × IR of the cost functional J subject to the initial value
problem (3.42) is given by

δJ(u?, t?f ;ω, τ) =

∫ t?f

t0

[

`u(t,x?(t),u?(t)) + fu(t,x?(t),u?(t))T
λ(0)(t)

]T
ω(t) dt

+
[

φt(t
?
f ,x

?(t?f )) + `(t?f ,x
?(t?f ),u?(t?f )) + f(t?f ,x

?(t?f ),u
?(t?f ))

T
λ(0)(t)

]

τ,

with the adjoint variables λ(0)(t), t0 ≤ t ≤ t?f , calculated as

λ̇
(0)

(t) =− `x(t,x?(t),u?(t)) − fx(t,x?(t),u?(t))
T
λ(0)(t); λ(0)(t?f ) = φx(t?f ,x

?(t?f )).

On the other hand, the Gâteaux variations at (u?, t?f ) in any direction (ω, τ) ∈
C [t0, T ]nu × IR of the functionals Pk subject to the initial value problem (3.42) is given by

δPk(u
?, t?f ;ω, τ) =

∫ t?f

t0

[

fu(t,x?(t),u?(t))
T
λ(k)(t)

]T
ω(t) dt

+
[

(ψk)t(t
?
f ,x

?(t?f )) + f(t?f ,x
?(t?f ),u?(t?f ))

T
λ(k)(t)

]

τ,

with the adjoint variables λ(k)(t), t0 ≤ t ≤ t?f , given by

λ̇
(k)

(t) =− fx(t,x?(t),u?(t))
T
λ(k)(t); λ(k)(t?f ) = (ψk)x(t?f ,x

?(t?f )), (3.49)

for each k = 1, . . . , nψ.
Note that, based on the differentiability assumptions on `, φ, ψ and f , the Gâteaux

derivatives δJ(u?, t?f ;ω, τ) and δPk(u?, t?f ;ω, τ) exist and are continuous in each direction
(ω, τ) ∈ C [t0, T ]nu × IR. Since (u?, t?f ) gives a (local) minimum for (3.40–3.42) and
condition (3.43) holds at (u?, t?f ), by Theorem 2.47 (and Remark 2.49), there exists a
vector ν? ∈ IRnψ such that

0 = δ
(

J +
∑nψ

k=1ν
?
kPk

)

(u?, t?f ; ξ, τ)

=

∫ t?f

t0

Hu(t,x?(t),u?(t),λ?(t))
T
ω(t) dt

+ [Φt(t
?
f ,x

?(t?f )) +H(t?f ,x
?(t?f ),u?(t?f ),λ?(t?f ))] τ,
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for each (ω, τ) ∈ C [t0, T ]nu × IR, where Φ := φ + ν?Tψ, λ? := λ(0) +
∑nψ

k=1 ν
?
kλ

(k),
and H := ` + λ?

T
f . In particular, taking τ := 0 and restricting attention to ω(t) such

that ωi(t) := Hui(t,x?(t),u?(t),λ?(t)) and ωj(t) := 0 for j 6= i, we get the necessary
conditions of optimality

Hui(t,x?(t),u?(t),λ?(t)) = 0, i = 1, . . . , nx,

for each t0 ≤ t ≤ t?f . On the other hand, choosing ω(t) := 0, t0 ≤ t ≤ t?f , and
τ := Φt(t

?
f ,x

?(t?f )) +H(t?f ,x
?(t?f ),u

?(t?f ),λ?(t?f )), yields the transversal condition

Φt(t
?
f ,x

?(t?f )) +H(t?f ,x
?(t?f ),u

?(t?f ),λ
?(t?f )) = 0.

Finally, since the adjoint differential equations giving λ(0) and λ(k), k = 1, . . . , nψ, are
linear, the adjoint variables λ? must satisfy the following differential equations and corre-
sponding terminal conditions

λ̇
?
(t) = −Hx(t,x?(t),u?(t),λ?(t)); λ?(t?f ) = Φx(t?f ,x

?(t?f )),

for all t0 ≤ t ≤ t?f .

Observe that the optimality conditions consist of nu algebraic equations (3.46), together
with 2×nxODEs (3.44,3.45) and their respective boundary conditions,which determine the
optimal control u?, response x?, and adjoint trajectories λ?. Here again, these equations
yield a challenging TPBVP. In addition, the necessary conditions (3.47) determine the
optimal Lagrange multiplier vector ν?. Finally, for problems with free terminal time,
the transversal condition (3.48) determines the optimal terminal time t?f . We thus have a
complete set of necessary conditions.

Remark 3.19 (Reachability Condition). One of the most difficult aspect in applying
Theorem 3.18 is to verify that the terminal constraints satisfy the regularity condition (3.43).
In order to gain insight into this condition, consider an optimal control problem of the form
(3.40–3.42), with fixed terminal time tf and a single terminal state constraint P(u) :=
xj(tf) − xfj = 0, for some j ∈ {1, . . . , nx}. The Gâteaux variation of P at u? in any
direction ω ∈ C [t0, tf]nu is

δP(u?;ω) =

∫ tf

t0

[

fu(t,x?(t),u?(t))
T
λ(j)(t)

]T
ω(t) dt,

where λ̇
(j)

(t) = −fx(t,x?(t),u?(t))
T
λ(j)(t), t0 ≤ t ≤ tf, with terminal conditions

λ
(j)
j (tf) = 1 and λ(j)

i (tf) = 0 for i 6= j. By choosing ω(t) := fu(t,x?(t),u?(t))T
λ(j)(t),

t0 ≤ t ≤ tf, we obtain the following sufficient condition for the terminal constraint to be
regular:

∫ tf

t0

λ(j)(t)
T
fu(t,x?(t),u?(t))fu(t,x?(t),u?(t))

T
λ(j)(t) dt 6=0. (3.50)

This condition can be seen as a reachability condition3 for the system. In other words, if
this condition does not hold, then it may not be possible to find a control u(t) so that the
terminal condition xj(tf) = xfj be satisfied at final time.

3Reachability is defined as follow (see, e.g., [2]):

Definition 3.20 (Reachability). A state xf is said to be reachable at time tf, if for some finite t0 < tf there exists
an input u(t), t0 ≤ t ≤ tf, that transfers the state x(t) from the origin at t0, to xf at time tf.
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More generally, for optimal control problems such as (3.40–3.42) with fixed terminal time
tf and nψ terminal constraints ψk(x(tf)) = 0, the foregoing sufficient condition becomes

rankΨ = nψ,

where Ψ is a (nψ × nψ) matrix defined by

Ψij :=

∫ tf

t0

λ(i)(t)
T
fu(t,x?(t),u?(t))fu(t,x?(t),u?(t))

T
λ(j)(t) dt, 1 ≤ i, j ≤ nψ,

with the adjoint variables λ(k)(t), t0 ≤ t ≤ tf, defined by (3.49).

A summary of the necessary conditions of optimality encountered so far is given here-
after, before an example is considered.

Remark 3.21 (Summary of Necessary Conditions). Necessary conditions of optimality
for the problem

minimize:
∫ tf

t0

`(t,x(t),u(t)) dt+ φ(tf,x(tf))

subject to: ψ(tf,x(tf)) = 0,

ẋ(t) = f (t,x(t),u(t)); x(t0) = x0,

are as follows:

◦ Euler-Lagrange Equations:

ẋ = Hλ

λ̇ = −Hx

0 = Hu







, t0 ≤ t ≤ tf;

withH := `+ λTf .

◦ Legendre-Clebsch Condition:

Huu semi-definite positive, t0 ≤ t ≤ tf;

◦ Transversal Conditions:
[

H + φt + νTψt
]

tf
= 0, if tf is free

[

λ− φx + νTψx

]

tf
= 0

[ψ]tf
= 0, and ψ satisfy a regularity condition;

Example 3.22. Consider the optimal control problem

minimize: J(u) :=

∫ 1

0

1
2u(t)

2 dt (3.51)

subject to: ẋ(t) = u(t)− x(t); x(0) = 1 (3.52)
x(1) = 0. (3.53)
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We start by considering the reachability condition (3.50). The adjoint equation corre-
sponding to the terminal constraint (3.53) is

λ̇(1)(t) = λ(1)(t); λ(1)(1) = 1,

which has solution λ(1)(t) = et−1. That is, we have
∫ 1

0

λ(j)T
fufu

Tλ(j) dt =

∫ 1

0

e2t−2 dt =
1− e2

2
6= 0.

Therefore, the terminal constraint (3.53) is regular and Theorem 3.18 applies.
The Hamiltonian function for the problem reads

H(x, u, λ) = 1
2u

2 + λ(u− x).

Candidate optimal solutions (u?, x?, λ?) are those satisfying the Euler-Lagrange equations

ẋ(t) = Hλ = u(t)− x(t); x(0) = 1

λ̇(t) = −Hx = λ(t); λ?(1) = ν

0 = Hu = u(t) + λ(t).

The adjoint equation has solution

λ?(t) = ν?et−1,

and from the optimality condition, we get

u?(t) = −ν?et−1.

(Note that u? is indeed a candidate minimum solution for the problem since Huu = 1 > 0
for each 0 ≤ t ≤ 1.) Substituting the optimal control candidate back into (3.52) yields

ẋ?(t) = −ν?et−1 − x(t); x(0) = 1.

Upon integration of the state equation, and drawing the results together, we obtain

u?(t) = − ν?et−1

x?(t) = e−t
[

1 +
ν?

2e
− ν?

2
e2t−1

]

= e−t − ν

e
sinh(t)

λ?(t) = ν?et−1.

(One may also use the fact that H = const. along an optimal trajectory to obtain x?(t).)
Finally, the terminal condition x?(1) = 0 gives

ν? =
2

e − e−1
=

1

sinh(1)
.

The optimal trajectories u?(t) and x?(t), 0 ≤ t ≤ 1, are shown in Fig. 3.6. below.

Remark 3.23 (Problems having Inequality Terminal Constraints). In case the opti-
mal control problem (3.40–3.42) has terminal inequality state constraints of the form
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Figure 3.6. Optimal trajectories u?(t) and x?(t), 0 ≤ t ≤ 1, in Example 3.22.

ψk(tf,x(tf)) ≤ 0 (in lieu of equality constraints), the conditions (3.44–3.46) and (3.48)
remain necessary for optimality. On the other hand, the constraint conditions (3.47) shall
be replaced by

ψ(tf,x(tf)) ≤ 0 (3.54)
ν ≥ 0 (3.55)

νTψ(tf,x(tf)) = 0. (3.56)

A proof is easily obtained upon invoking Theorem 2.51 instead of Theorem 2.47 in the
proof of Theorem 3.18.

3.4.6 Application: Linear Time-Varying Systems with Quadratic Criteria

Consider the problem of bringing the state of a linear time-varying (LTV) system,

ẋ(t) = A(t)x(t) + B(t)u(t), (3.57)

with x(t) ∈ IRnx and u(t) ∈ IRnu , from an initial state x(t0) 6= 0 to a terminal state

x(tf) ≈ 0, tf given,

using “acceptable” levels of the control u(t), and not exceeding “acceptable” levels of the
state x(t) on the path.

A solution to this problem can be obtained by minimizing a performance index made up
of a quadratic form in the terminal state plus an integral of quadratic forms in the state and
controls:

J(u) :=

∫ tf

t0

1
2

[

u(t)
TQ(t)u(t) + x(t)

TR(t)x(t)
]

dt+ 1
2x(tf)

TSfx(tf), (3.58)

where Sf � 0, R(t) � 0, and Q(t) � 0 are symmetric matrices. (In practice, these matrices
must be so chosen that “acceptable” levels of x(tf), x(t), and u(t) are obtained.)
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Using the necessary conditions derived earlier in � 3.4.5, a minimizing control u? for
(3.58) subject to (3.57) must satisfy the Euler-Lagrange equations,

ẋ(t) =Hλ(t,x(t),u(t),λ(t)); x(t0) = x0

λ̇(t) = −Hx(t,x(t),u(t),λ(t)); λ(tf) = Sfx(tf)

0 =Hu(t,x(t),u(t),λ(t)), (3.59)

where

H(t,x,u,λ) = 1
2u

TQ(t)u + 1
2x

TR(t)x + λT[A(t)x + B(t)u].

Conversely, a control u? satisfying the Euler-Lagrange equations is a global optimal control
since the differential equation is linear, the integral cost is jointly convex in (x,u), and the
terminal cost is convex in x.

From (3.59), we have

u?(t) = −Q(t)−1B(t)
T
λ?(t), (3.60)

which in turn gives
[

ẋ?(t)

λ̇
?
(t)

]

=

[

A −BQ−1BT

−R −AT

]

[

x?(t)
λ?(t)

]

;
x?(t0) = x0

λ?(tf) = Sfx
?(tf).

(3.61)

Note that since these differential equations and the terminal boundary condition are homo-
geneous, their solutions x?(t) and λ?(t) are proportional to x(t0).

An efficient method for solving the TPBVP (3.61) is the so-called sweep method. The
idea is to determine the missing initial condition λ(t0), so that (3.61) can be integrated
forward in time as an initial value problem. For this, the coefficients of the terminal condition
λ?(tf) = Sfx

?(tf) are swept backward to the initial time, so that λ?(t0) = S(t0)x
?(t0).

At intermediates times, substituting the relation λ?(t) = S(t)x?(t) into (3.61) yields the
following matrix Riccati equation:

Ṡ = − SA− ATS + SBQ−1BTS− R; S(tf) = Sf. (3.62)

It is clear that S(t) is a symmetric matrix at each t0 ≤ t ≤ tf since Sf is symmetric and so
is (3.62). By integrating (sweeping) (3.62) from tf back to t0, one gets

λ?(t0) = S(t0)x
?(t0),

which may be regarded as the equivalent of the boundary terminal condition in (3.61) at an
earlier time. Then, onceλ?(t0) is known, x?(t) andλ?(t) are found by forward integration
of (3.61) from x?(t0) andλ?(t0), respectively, which finally gives u?(t), t0 ≤ t ≤ tf, from
(3.60).

Even more interesting, one can also use the entire trajectory S(t), t0 ≤ t ≤ tf, to
determine the continuous feedback law for optimal control as

u?(t) = −
[

Q(t)−1B(t)
TS(t)

]

x?(t). (3.63)

Remark 3.24. The foregoing approach can be readily extended to LQR problems having
mixed state/control terms in the integral cost:

J(u) :=

∫ tf

t0

1
2

[

u(t)
x(t)

]T [ Q P
PT R

] [

u(t)
x(t)

]

dt+ 1
2x(tf)

TSfx(tf).
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The matrix Riccati equation (3.62) becomes

Ṡ = − S
(

A− BQ−1PT
)

−
(

A− BQ−1PT
)T

S + SBQ−1BTS + PQ−1PT − R,

the state/adjoint equations as

[

ẋ?(t)

λ̇
?
(t)

]

=

[

A− BQ−1PT −BQ−1BT

−R + PQ−1PT −(A− BQ−1PT)
T

]

[

x?(t)
λ?(t)

]

,

and the control is given by

u?(t) = −Q(t)−1
[

P(t)
T
x?(t) + B(t)

T
λ?(t)

]

= −Q(t)−1
[

P(t)
T

+ B(t)
TS(t)

]

x?(t).

3.5 MAXIMUM PRINCIPLES

In � 3.4, we described first-order conditions that every (continuous or piecewise continu-
ous) optimal control must necessarily satisfy, provided that no path restriction is placed
on the control or the state variables. In this section, we shall present more general neces-
sary conditions of optimality for those optimal control problems having path constraints.
Such conditions are known collectively as the Pontryagin Maximum Principle (PMP). The
announcement of the PMP in the late 1950’s can properly be regarded as the birth of the
mathematical theory of optimal control.

In � 3.5.1, we shall describe and illustrate the PMP for autonomous problems (a complete
proof is omitted herein because it is too technical). Two important extensions, one to
non-autonomous problems, and the other to problems involving sets as target data (e.g.,
x(tf) ∈ Sf, where Sf is a specified set) shall be discussed in � 3.5.2. An application of the
PMP to linear time-optimal problems shall be presented in � 3.5.3. Then, the case of singular
problems shall be considered in � 3.5.4. Finally, necessary conditions for problems with
mixed and pure state path constraints shall be presented in � 3.5.5 and � 3.5.6, respectively.

3.5.1 Pontryagin Maximum Principle for Autonomous Systems

Throughout this subsection, we shall consider the problem to minimize the cost functional

J(u, tf) :=

∫ tf

t0

`(x(t),u(t)) dt,

with fixed initial time t0 and unspecified final time tf, subject to the autonomous dynamical
system

ẋ(t) = f(x(t),u(t)); x(t0) = x0,

and a fixed target state
x(tf) = xf.

The admissible controls shall be taken in the class of piecewise continuous functions

u ∈ U[t0, T ] := {u ∈ Ĉ [t0, T ] : u(t) ∈ U for t0 ≤ t ≤ tf},

with tf ∈ [t0, T ], where T is “sufficiently” large, and the nonempty, possibly closed and
nonconvex, set U denotes the control region.
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Observe that since the problem is autonomous (neither f nor ` show explicit dependence
on time), a translation along the t-axis does not change the properties of the controls. In
other words, if the control u(t), t0 ≤ t ≤ tf, transfers the phase point from x0 to xf, and
imparts the value J to the cost functional, then the control u(t+θ), t0−θ ≤ t ≤ tf−θ, also
transfers the phase point from x0 to xf and imparts the same value J to the cost functional,
for any real number θ. This makes it possible to relocate the initial time t0 from which the
control is given anywhere on the time axis.

Before we can state the PMP, some notation and analysis is needed. For a given control
u and its corresponding response x, we define the dynamic cost variable c as

c(t) :=

∫ t

t0

`(x(τ),u(τ)) dτ.

If u is feasible, x(tf) = xf for some tf ≥ t0, and the associated cost is J(u, tf) = c(tf).
Then, introducing the (nx + 1)-vector x̃(t)

T
:= (c(t),x(t)

T
) (extended response), and

defining f̃(x,u)
T

:= (`(x,u), f(x,u)T) (extended system), an equivalent formulation for
the optimal control problem is as follows:

Problem 3.25 (Reformulated Optimal Control Problem). Find an admissible control u
and final time tf such that the (nx + 1)-dimensional solution of

˙̃x(t) = f̃(x(t),u(t)); x̃(t0) =

(

0
x0

)

,

terminates at
(

c(tf)
xf

)

(xf the given target state),

with c(tf) taking on the least possible value.

A geometrical interpretation of Problem 3.25 is proposed in Fig. 3.7. below. If we
let Π be the line passing through the point (0,xf) and parallel to the c-axis (this line
is made up of all the points (ζ,xf) where ζ is arbitrary), then the (extended) response
corresponding to any feasible control u passes through a point on Π. Moreover, if u? is
a (globally) optimal control, no extended response x̃ := (J(u, tf),xf) can hit the line Π
below x̃? := (J(u?, t?f ),xf).

To establish the PMP, the basic idea is to perturb an optimal control, say u?, by changing
its value to any admissible vector v over any small time interval. In particular, the corre-
sponding perturbations in the response belong to a cone K(t) in the (nx + 1)-dimensional
extended response space (namely, the cone of attainability). That is, if a pair (u?,x?) is
optimal, then K(t?f ) does not contain any vertical downward vector, d̃ = µ(1, 0, . . . , 0)

T,
µ < 0, at x̃?(t?f ) (provided t?f is regular). In other words, IRnx+1 can be separated into two
half-spaces by means of a support hyperplane passing at the vertex (0,xf) of K(t?f ),

d̃
T
x̃ ≤ 0, ∀x̃ ∈ K(t?f ).

it is this latter inequality that leads to the PMP:
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Figure 3.7. Geometric representation of Problem 3.25. (The c-axis is vertical for clarity.)

Theorem 3.26 (Pontryagin Maximum Principle for Autonomous Systems4). Consider
the optimal control problem

minimize: J(u, tf) :=

∫ tf

t0

`(x(t),u(t)) dt (3.64)

subject to: ẋ(t) = f (x(t),u(t)); x(t0) = x0; x(tf) = xf (3.65)
u(t) ∈ U, (3.66)

with fixed initial time t0 and free terminal time tf. Let ` and f be continuous in (x,u) and
have continuous first partial derivatives with respect to x, for all (x,u) ∈ IRnx × IRnu .
Suppose that (u?, t?f ) ∈ C [t0, T ]nu × [t0, T ) is a minimizer for the problem, and let x̃?

denote the optimal extended response. Then, there exists a nx + 1-dimensional piecewise
continuously differentiable vector function λ̃

?
= (λ?0, λ

?
1, . . . , λ

?
nx

) 6= (0, 0, . . . , 0) such
that

˙̃
λ
?

(t) =−Hx̃(x?(t),u?(t), λ̃
?
(t)), (3.67)

with H(x,u, λ̃) := λ̃
T
f̃ (x,u), and:

(i) the functionH(x?(t),v, λ̃
?
(t)) attains its minimum on U at v = u?(t):

H(x?(t),v, λ̃
?
(t)) ≥ H(x?(t),u?(t), λ̃

?
(t)), ∀v ∈ U, (3.68)

for every t0 ≤ t ≤ t?f ;

(ii) the following relations

λ?0(t) = const. ≥ 0 (3.69)

H(x?(t),u?(t), λ̃
?
(t)) = const., (3.70)

4In the original Maximum Principle formulation [41], the condition (3.68) is in fact a maximum condition, and the
sign requirement for the costate variable λ?

0 in (3.69) is reversed. We decided to present the PMP with (3.68) and
(3.69) in order that that the resulting necessary conditions be consistent with those derived earlier in � 3.4 based
on the variational approach. Therefore, the PMP corresponds to a “minimum principle” herein.
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are satisfied at every t ∈ [t0, t
?
f ]. In particular, if the final time is unspecified, the

following transversal condition holds:

H(x?(t?f ),u?(t?f ), λ̃
?
(t?f )) = 0. (3.71)

Proof. A complete proof of the PMP can be found, e.g., in [41, Chapter 2] or in [38,
Chapter 5].

The PMP allows to single out, from among all controls whose response starts at x0 and
ends at some point of Π, those satisfying all of the formulated conditions. Observe that
we have a complete set of 2× nx + nu + 3 conditions for the nu + 2× nx + 3 variables
(u, x̃, λ̃, tf). In particular, the extended state x̃ and adjoint λ̃ trajectories are determined by
2× nx + 2 ODEs, with the corresponding nx + 1 initial conditions x̃(t0)

T
= (0,x0

T) and
the nx terminal conditions x(tf) = xf, plus the adjoint terminal condition λ0(tf) ≥ 0. We
thus have either one of two possibilities:

(i) If λ0(t) > 0, t0 ≤ t ≤ tf, then the functions λi, 0 ≤ i ≤ nx, are defined up to
a common multiple (since the functionH is homogeneous with respect to λ). This
case is known as the normal case, and it is common practice to normalize the adjoint
variables by taking λ0(t) = 1, t0 ≤ t ≤ tf.

(ii) If λ0(t) = 0, t0 ≤ t ≤ tf, the adjoint variables are determined uniquely. This case is
known as the abnormal case, however, since the necessary conditions of optimality
become independent of the cost functional.

Besides differential equations, the minimum condition (3.68) determines the control vari-
ables u, and the transversal condition (3.70) determines tf.

Notice that the PMP as stated in Theorem 3.26 applies to a minimization problem. If
instead, one wishes to maximize the cost functional (3.64), the sign of the inequality (3.69)
should be reversed,

λ?0(t
?
f ) ≤ 0.

(But the minimum condition (3.68) should not be made a maximum condition for a maxi-
mization problem!)

Remark 3.27 (Link to the First-Order Necessary Conditions of � 3.4). It may appear on
first thought that the requirement in (3.68) could have been more succinctly embodied in
the first-order conditions

Hu(u?(t),x?(t),λ?(t)) = 0,

properly supported by the second-order condition

Huu(u?(t),x?(t),λ?(t)) � 0,

for each t0 ≤ t ≤ t?f . It turns out, however, that the requirement (3.68) is a much broader
statement. First, it allows handling restrictions in the control variables, which was not the
case for the first- and second-order conditions obtained with the variational approach in

� 3.4. In particular, the condition Hu = 0 does not even apply when the minimum of H
occurs on the boundary of the control regionU . Moreover, like the Weierstrass condition in
the classical calculus of variations (see Theorem 2.36, p. 87), the condition (3.68) allows to
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detect strong minima, and not merely weak minima.5 Overall, the PMP can thus be thought
of as the generalization to optimal control problems of the Euler equation, the Legendre
condition, and the Weierstrass condition in the classical calculus of variations, taken all
together. Observe also that the PMP is less restrictive that the variational approach since `
and f are not required to be continuously differentiable with respect to u (only continuous
differentiability with respect to x is needed).

Example 3.28. Consider the same optimal control problem as in Example 3.22,

minimize: J(u) :=

∫ 1

0

1
2u(t)

2 dt (3.72)

subject to: ẋ(t) = u(t)− x(t); x(0) = 1; x(1) = 0, (3.73)

where the controlu is now constrained by the condition that−0.6 ≤ u(t) ≤ 0, for t ∈ [0, 1].
The Hamiltonian function for the problem reads

H(x, u, λ0, λ) = 1
2λ0u

2 + λ(u− x).

The optimal adjoint variables λ?0 and λ? must therefore satisfy the differential equations

λ̇0(t) = −Hc = 0

λ̇(t) = −Hx = λ(t),

from which we get

λ?0(t) = K0

λ?(t) = Ket.

(We shall set K0 = 1 subsequently, since the problem (3.72,3.73) is not abnormal.)
The PMP imposes that every optimal control u? must be such that

u?(t) ∈ argmin
v
{H(x?(t), v, λ?0(t), λ

?(t)) : −0.6 ≤ v ≤ 0},

for each t ∈ [0, 1], from which we get

u?(t) =







0 if λ?(t) ≤ 0
−0.6 if λ?(t) ≥ 0.6
−λ?(t) = −Ket otherwise

Note that K ≤ 0 implies λ?(t) ≤ 0 at each time, and u?(t) = 0, 0 ≤ t ≤ 1. However, this
control yields an infeasible response (x?(1) 6= 0), and henceK > 0. That is, every optimal
control is a piecewise continuous function which takes the values −Ket or −0.6, and has
at most 1 corner point (since λ? is strictly decreasing in [0, 1]):

u?(t) = u?(1)(t) = −Ket, 0 ≤ t ≤ t?s u?(t) = u?(2)(t) = −0.6, t?s < t ≤ 1,

5By analogy to the classical calculus of variations (see � 2.3, p. 66), weak minima correspond to “sufficiently” small
perturbations in u that assure negligible higher-order terms both in ‖δx‖2 and ‖δu‖2; on the other hand, strong
minima consider more general variations in u that assure negligible higher-order terms in ‖δx‖2 only.
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where t?s denotes the (optimal) switching time. In particular, there must be a corner point
since the control u?(t) = −0.6, 0 ≤ t ≤ 1, yields an infeasible response.

• For the time interval 0 ≤ t ≤ t?s , we have

x?(1)(t) = C1e−t
(

1− K

2C1
e2t

)

H(u?(1)(t), x
?
(1)(t), λ̃

?
(t)) = −KC1,

where C1 is a constant of integration.

• For the time interval t?s < t ≤ 1, on the other hand, we have

x?(2)(t) = C2e−t − 0.6

H(u?(2)(t), x
?
(2)(t), λ̃

?
(t)) = −KC2 +

(−0.6)2

2
,

where C2 is another constant of integration.

Moreover, since the arc x?(1) starts at t = 0 with x?(1)(0) = 1, and the arc x?(2) ends at t = 1

with x?(2)(1) = 0, the constants of integration C1 and C2 are given by

C1 = 1 +
K

2
and C2 = 0.6e.

The Hamiltonian functionH being constant along an optimal solution, we have

H(u?(1)(t
?
s), x

?
(1)(t

?
s), λ̃

?
(t?s)) = H(u?(2)(t

?
s), x

?
(2)(t

?
s), λ̃

?
(t?s)),

from which we get

K = −(1− 0.6e)−
√

(1− 0.6e)2 − (−0.6)2 ≈ 0.436.

(The other possible value ofK = −(1−0.6e)+
√

(1− 0.6e)2 − (−0.6)2 ≈ 0.826 giving
a switching time t?s not in the range [0, 1].) Finally, the switching time t?s is deduced from
the state continuity condition, x?(1)(t

?
s) = x?(2)(t

?
s). Numerically, we get t?s ≈ 0.320.

The optimal trajectories u?(t) and x?(t), 0 ≤ t ≤ 1, are shown in Fig. 3.8. be-
low. Notice, in particular, that the optimal control is continuous. That is, the condition
H(u?(1)(t

?
s), x

?
(1)(t

?
s), λ̃

?
(t?s)) = H(u?(2)(t

?
s), x

?
(2)(t

?
s), λ̃

?
(t?s)) determiningK imposes that

the trajectories x(1) and x(2) be tangent at t?s . These optimal trajectories should also be
compared to those obtained in Example 3.22 without restriction placed on the control vari-
ables.

3.5.2 Extensions of the Pontryagin Maximum Principle

In this subsection, we shall treat two extensions of the PMP. The first extension is for
the case where the terminal condition x(tf) = xf is replaced by the target set condition
x(tf) ∈ Xf ⊂ IRnx . The second extension is to non-autonomous problems, and makes use
of the former.
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Figure 3.8. Optimal trajectories u?(t) and x?(t), 0 ≤ t ≤ 1, in Example 3.28.

Regarding target set terminal conditions, we have the following theorem:

Theorem 3.29 (Transversal Conditions). Consider the optimal control problem

minimize: J(u, tf) :=

∫ tf

t0

`(x(t),u(t)) dt (3.74)

subject to: ẋ(t) = f(x(t),u(t)); x(t0) = x0; x(tf) ∈ Xf (3.75)
u(t) ∈ U, (3.76)

with fixed initial time t0 and free terminal time tf, and with Xf a smooth manifold of
dimension nf ≤ nx. Let ` and f be continuous in (x,u) and have continuous first partial
derivatives with respect to x, for all (x,u) ∈ IRnx × IRnu . Suppose that (u?, t?f ) ∈
C [t0, T ]nu × [t0, T ) is a minimizer for the problem, and let x̃? denote the optimal extended
response. Then, there exists a piecewise continuously differentiable vector function λ̃

?
=

(λ?0, λ
?
1, . . . , λ

?
nx

) 6= (0, 0, . . . , 0) solving (3.67) and satisfying conditions (3.68–3.71) of
Theorem 3.26. Moreover, λ?(t?f ) := (λ?1(t

?
f ), . . . , λ?nx(t

?
f )) is orthogonal to the tangent

plane, T (x?(t?f )), to Xf at x?(t?f ):

λ?(t?f )
T
d = 0, ∀d ∈ T (x?(t?f )). (3.77)

Proof. A complete proof of the transversal conditions (3.77) can be found, e.g., in [41,
Chapter 2].

Notice that when the set Xf degenerates into a point, the transversality condition at t?f
can be replaced by the condition that the optimal response x? pass through this point, as in
Theorem 3.26.

In many practical problems, the target set Xf is specified as the intersection of nψ =
nx − nf hypersurfaces defined by the equations

ψk(x) = 0, k = 1, . . . , nψ.

Provided that the functionsψ1, . . . , ψnψ are linearly independent at x?(t?f ), i.e., the follow-
ing constraint qualification holds:

rank[ψx(x?(t?f ))] = nψ, (3.78)
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the tangent set T (x?(t?f )) is such that

T (x?(t?f )) = {d ∈ IRnx : ψx(x?(t?f )) d = 0},

(see, e.g., Lemma 1.48, p. 23). For the transversal condition (3.77) to be satisfied, it is thus
necessary that λ?(t?f ) be in the subspace spanned by the row vectors of ψx(x?(t?f )); in
other words, there must exist a vector ν of Lagrange multipliers such that

λ?(t?f ) = νTψx(x?(t?f )),

hence yielding the same terminal adjoint condition as in Theorem 3.18.

We now turn to the extension of the PMP for non-autonomous problems. We shall
consider the optimal control problem in the same form as in (3.64–3.66), but for the case
in which ` and f depend explicitly on time (the control regionU is assumed independent of
time). Thus, the system equations and the cost functional take the form

ẋ(t) = f(t,x(t),u(t)) (3.79)

J(u, tf) :=

∫ tf

t0

`(t,x(t),u(t)) dt.

In order to solve this problem, we shall introduce yet another auxiliary variable, xnx+1,
defined by

ẋnx+1(t) = 1; xnx+1(t0) = t0.

It is obvious that xnx+1(t) = t, t0 ≤ t ≤ tf. Therefore, we get the (nx + 1)-dimensional
system

ẋ(t) = f(xnx+1(t),x(t),u(t))

ẋnx+1(t) = 1.

Next, we apply the autonomous version of the PMP with transversal conditions (Theo-
rem 3.29) to find necessary conditions of optimality, in terms of the (nx + 2)-dimensional
vector (c,xT, xnx+1), where

ċ = `(xnx+1(t),x(t),u(t)); c(t0) = 0.

Using the same notations as in � 3.5.1 for the extended response, x̃T := (c,xT), and

the extended system, f̃
T

:= (`, fT), the equations giving the (nx + 2) adjoint variables

(λ̃
T
, λnx+1) := (λ0, λ1, . . . , λnx , λnx+1) read

λ̇0(t) = 0

λ̇i(t) = − λ̃(t)
T
f̃xi(xnx+1,x,u), i = 1, . . . , nx

λ̇nx+1(t) = − λ̃(t)
T
f̃ t(xnx+1,x,u).

Moreover, the transversal condition at tf requires that Xf (which is parallel to the xnx+1

axis) be orthogonal to the vector (λ1, . . . , λnx , λnx+1). But since Xf is parallel to the
xnx+1 axis, it follows that

λnx+1(tf) = 0.
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Overall, a version of the PMP for non-autonomous system is as follows:

Theorem 3.30 (Pontryagin Maximum Principle for Non-Autonomous Systems). Con-
sider the optimal control problem

minimize: J(u, tf) :=

∫ tf

t0

`(t,x(t),u(t)) dt (3.80)

subject to: ẋ(t) = f(t,x(t),u(t)); x(t0) = x0; x(tf) = xf (3.81)
u(t) ∈ U, (3.82)

with fixed initial time t0 and free terminal time tf. Let ` and f be continuous in
(t,x,u) and have continuous first partial derivatives with respect to (t,x), for all
(t,x,u) ∈ [t0, T ] × IRnx × IRnu . Suppose that (u?, t?f ) ∈ C [t0, T ]nu × [t0, T ) is
a minimizer for the problem, and let x̃? denote the optimal extended response. Then,
there exists a (nx + 1)-dimensional, piecewise continuously differentiable vector function
λ̃
?

= (λ?0, λ
?
1, . . . , λ

?
nx

) 6= (0, 0, . . . , 0) such that

˙̃
λ
?

(t) =−Hx̃(t,x?(t),u?(t), λ̃
?
(t)), (3.83)

with H(t,x,u, λ̃) := λ̃
T
f̃(t,x,u), and:

(i) the functionH(x?(t),v, λ̃
?
(t)) attains its minimum on U at v = u?(t):

H(t,x?(t),v, λ̃
?
(t)) ≥ H(t,x?(t),u?(t), λ̃

?
(t)), ∀v ∈ U, (3.84)

for every t0 ≤ t ≤ t?f ;

(ii) the following relations

λ?0(t) = const. ≥ 0 (3.85)

Ḣ(t,x?(t),u?(t), λ̃
?
(t)) = λ̃

?
(t)

T
f̃ t(t,x

?(t),u?(t)), (3.86)

are satisfied at any t ∈ [t0, t
?
f ]. Moreover, in the case wherein the final time is

unspecified, t?f is determined from the transversal condition

H(t?f ,x
?(t?f ),u?(t?f ), λ̃

?
(t?f )) = 0. (3.87)

3.5.3 Application: Linear Time-Optimal Problems

An interesting application of the PMP is in the special case of a linear time-invariant system
and a linear cost functional,

minimize: J(u, tf) :=

∫ tf

t0

[aTu(t) + bTx(t) + c] dt (3.88)

subject to: ẋ(t) = Fx(t) + Gu(t); x(t0) = x0; x(tf) = xf (3.89)
u(t) ∈ U. (3.90)

with fixed initial time t0 and free terminal time tf. In the case where the control regionU is
unbounded, no minimum exists, in general, for such problems; this is because the control
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may take on infinite values, which correspond to instantaneous jumps of the state variables
in the phase space. On the other hand, when U is bounded, e.g., U :=

[

uL,uU
]

, it is
reasonable to expect that the control will lie on the boundary of U , and that it will jump
from one boundary of U to another during the time of operation of the system. The name
bang-bang control has been coined to describe such situations wherein the controls move
suddenly from one boundary point of the control region to another boundary point.

In this subsection, we shall only consider the so-called linear time-optimal problem, and
limit our discussion to the case of a scalar control. More precisely, we consider the problem
of finding a piecewise continuous controlu ∈ Ĉ [t0, T ] that brings the system from an initial
state x0 6= 0 to the origin, in minimum time:

minimize: J(u, tf) :=

∫ tf

t0

dt = tf − t0 (3.91)

subject to: ẋ(t) = Fx(t) + gu(t); x(t0) = x0; x(tf) = 0 (3.92)

u(t) ∈ [uL, uU ]. (3.93)

The Hamiltonian function for this problem reads

H(x, u, λ̃) = λ0 + λT[Fx + gu].

It shall be assumed throughout that the problem is normal, and we take λ0(t) = 1. Then,
upon application of the PMP (Theorem 3.26), a necessary condition for u? to be an optimal
control is6

u?(t) =

{

uU if λ?(t)T
g < 0

uL if λ?(t)T
g > 0,

(3.94)

for each t0 ≤ t ≤ t?f , where (x?(t), λ?(t)) satisfy

ẋ?(t) = F x?(t) + g u?(t)

λ̇
?
(t) = − FT

λ?(t), (3.95)

with boundary conditions x?(t0) = x0 and x?(t?f ) = 0; moreover, t?f is obtained from the
transversal condition (3.71), which with x?(t?f ) = 0 gives:

λ?(t?f )
T
gu?(t?f ) = − 1. (3.96)

The quantityλ?(t)T
g is, for obvious reasons, called the switching function. Ifλ?(t)T

g = 0
cannot be sustained over a finite interval of time, then the optimal control is of bang-bang
type; in other words, u?(t) is at uL when the switching function is positive, and at uU when
the switching function is negative.

Example 3.31 (Bang-Bang Example). Consider the linear time-optimal problem (3.91–
3.93) with

ẋ1(t) = x2(t), ẋ2(t) = u(t), −1 ≤ u(t) ≤ 1.

6Note that we also have the possibility that λ(t)T
g = 0 on some nonempty interval of time, which corresponds to

a singular control arc; singular problems shall be discussed later in � 3.5.4.
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For this simple system, an optimal control u? must satisfy

u?(t) =

{

1 if λ?2(t) < 0
−1 if λ?2(t) > 0.

The adjoint variables λ? verify the differential equations (3.95),

λ̇?1(t) = 0

λ̇?2(t) = − λ?1(t),

which are readily solved as

λ1
?(t) = A1

λ2
?(t) = −A1t+A2,

where A1 and A2 are constants of integration. That is, the switching function λ?(t)T
g =

−A1t + A2 is a linear function of time, and it follows that every optimal control u?(t),
t0 ≤ t ≤ t?f , is a piecewise constant function which takes on the values±1, and has at most
two intervals on which it is constant.

◦ For the time interval on which u?(t) = 1, we have

x?2(t) = t+K1, x?1(t) =
t2

2
+K2t+K1 =

1

2
(t+K2)

2 +

(

K1 −
K2

2

2

)

,

(where K1 and K2 are constants of integration), from which we get

x?1(t) =
1

2
[x?2(t)]

2 +K, (3.97)

withK = K1− 1
2K

2
2 . Thus, the portion of the optimal response for which u(t) = 1

is an arc of the parabola (3.97), along which the phase points move upwards (since
ẋ2 = 1 > 0).

◦ analogously, for the time interval on which u?(t) = −1, we have

x?2(t) = −t+K ′
1, x?1(t) =

t2

2
+K ′

2t+K
′
1 = −1

2
(−t+K ′

2)
2 +

(

K ′
1 +

K ′
2
2

2

)

,

from which we obtain

x?1(t) = − 1

2
[x?2(t)]

2 +K ′. (3.98)

thus, the portion of the optimal response for whichu(t) = −1 is an arc of the parabola
(3.98), along which the phase points move downwards (since ẋ2 = −1 < 0).

Observe that if u? is initially equal to 1, and to−1 afterwards, the response consists of two
adjoining parabolic arcs, and the second arc lies on that parabola defined by (3.98) which
passes through the origin:

x?1(t) = − 1

2
[x?2(t)]

2. (3.99)
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Likewise, if u? = −1 first, and u? = 1 afterwards, the second arc lies on that parabola
defined by (3.97) which passes through the origin:

x?1(t) =
1

2
[x?2(t)]

2. (3.100)

The switching curve is therefore made up of the parabolas (3.99) (for x2 > 0) and (3.100)
(for x2 < 0). By inspection, it is apparent that (i) u? = −1 above the switching curve, and
(ii) u? = 1 below the switching curve. Overall, the optimal feedback law for the problem
may thus be written as:

u?(t) =







1 if [x?2]
2 signx2 < −2x?1 or [x?2]

2 signx2 = −2x?1, x?1 > 0

−1 if [x?2]
2 signx2 > −2x?1 or [x?2]

2 signx2 = −2x?1, x?1 < 0.

The switching curve is illustrated in Fig. 3.9. below, along with typical optimal responses
obtained for different initial conditions.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5  0  0.5  1

PSfrag replacements

x1

x
2

x−
0

x+
0

u ?
= +1

u ?
= −1

u ?
= +1

u ?
= −1

switching
curve

Figure 3.9. Switching curve and typical optimal responses for Example 3.31 — Red line: switching
curve; blue line: typical path.

3.5.4 Singular Optimal Control Problems

In all the optimal control problems considered so far, the values u?(t) of candidate optimal
controls could be explicitly determined by a minimum condition such as

H(t,x?(t),v, λ̃
?
(t)) ≥ H(t,x?(t),u?(t), λ̃

?
(t)), ∀v ∈ U, (3.101)

at each time instant t ∈ [t0, tf]. However, it may happen for some problems that u?(t)
cannot be directly determined by the foregoing condition.



MAXIMUM PRINCIPLES 145

To illustrate this situation, consider the following (scalar) optimal control problem:

minimize: J(u) :=

∫ tf

t0

`0(t,x(t)) + u(t) `1(t,x(t)) dt

subject to: ẋ(t) = f0(t,x(t)) + u(t) f1(t,x(t)); x(t0) = x0; x(tf) = xf

u(t) ∈ U := [uL, uU ],

for u ∈ Ĉ [t0, tf], with fixed initial time t0 and final time tf. Since the Hamiltonian function
is affine in the control u (i.e., contains u in at most the first power), we have

H(t,x, u, λ̃) = H0(t,x, λ̃) + u(t) H1(t,x, λ̃),

where
H0 := λ0`

0 + λTf 0, and H1 := λ1`
1 + λTf1.

To minimize the Hamiltonian function at a given t ∈ [t0, tf], one has to take u?(t) = uU if
H1(t,x?(t), λ̃

?
(t)) > 0, and u?(t) = uL if H1(t,x?(t), λ̃

?
(t)) < 0. We then have either

one of two situations:

(i) If the term H1(t,x?(t), λ̃
?
(t)) vanishes only at isolated times, then the control u

switches from uL to uU or vice versa each timeH1(t,x?(t), λ̃
?
(t)) crosses zero; the

control is said to be bang-bang. An illustration of this behavior was given earlier in
Example 3.31.

(ii) On the other hand, if H1(t,x?(t), λ̃
?
(t)) = 0 can be sustained over some finite

interval (θ1, θ2) ⊂ [t0, tf], then any value ofu ∈ [uL, uU ] trivially meets the minimum
condition (3.101). In other words, the control does not affect the Hamiltonian function
on (θ1, θ2), and we have a singular arc.

For more general scalar optimal control problems of the form (3.80–3.82), singular arcs
are obtained when the stationarity condition

Hu(t,x?(t), u, λ̃
?
(t)) = 0,

is trivially satisfied by any admissible control on some nonempty subinterval (θ1, θ2) ⊂
[t0, tf], i.e., the matrix Huu is singular. In the case of a vector control problem, the subse-
quent developments apply readily to each component uk(t), k = 1, . . . , nu, of u(t).

The following idea is used to determine the value of an optimal control along a singular
arc. SinceHu = 0 for all t ∈ (θ1, θ2), its successive time derivatives dq

dtqHu, q = 1, 2, . . .,
must also vanish on (θ1, θ2). In particular, we may find a smallest positive integer q̄ such
that

dq̄

dtq̄
Hu(t,x?(t), ·, λ̃

?
(t)) = 0

∂

∂u

[

dq̄

dtq̄
Hu(t,x?(t), ·, λ̃?(t))

]

6= 0.

Note that if such a smallest integer q̄ exists, it must be even (see, e.g., [29] for a proof).
Then, the nonnegative integer p such that q̄ = 2p is called the order of the singular arc. Note
also that singular arcs are not possible at all points of the (x, λ̃)-space. Along a singular
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arc, the state and adjoint variables must lie on the so-called singular surface defined by the
equations:

Hu(t,x?(t), u?(t), λ̃
?
(t)) = 0

d
dt
Hu(t,x?(t), u?(t), λ̃

?
(t)) = 0

...

d2p−1

dt2p−1
Hu(t,x?(t), u?(t), λ̃

?
(t)) = 0,

together with the additional equation Hu(t,x?(t), u?(t), λ̃
?
(t)) = 0 if the final time is

unspecified (see Theorem 3.30).
The analog to the Legendre-Clebsch condition (see Remark 3.21) along a singular arc

reads

(−1)p
∂

∂u

[

d2p

dt2p
Hu(t,x?(t), u?(t), λ̃

?
(t))

]

≥ 0,

for each t ∈ (θ1, θ2); this condition is often referred to as the generalized Legendre-Clebsch
condition. (The inequality is reversed for a maximization problem.) Moreover, similar
to non-singular optimal control problems (without inequality state constraint), both the
adjoint variables λ̃ and the Hamiltonian functionH must be continuous, along an optimal
trajectory, in a singular control problem (see � 3.4.3).

In general, solutions to optimal control problems have a mixture of arcs, some singular
and some nonsingular. In order to find the correct sequence of arcs, one has to postulate a
particular sequence, and then check whether or not the necessary conditions of optimality
are satisfied for that sequence.7 Note, however, that finding the correct sequence of controls
analytically may be very complicated and is even impossible for many problems.

In addition to the necessary conditions that the adjoint and the Hamiltonian must be
continuous along an optimal trajectory, additional conditions must hold at the joining of a
nonsingular arc to a singular arc, and vice versa. For first-order singular control problems,
p = 1, the control variable u at the entry point θ1 and the exit point θ2 of a singular arc
is either discontinuous (i.e., corner junctions are permitted), or continuously differentiable
(see, e.g., [40] for a proof). In other words, an optimal control u? cannot be continuous at
a junction time if its time derivative u̇? is discontinuous. We present a first-order singular
problem in Example 3.32 below.

Example 3.32 (First-Order Singular Optimal Control Problem). Consider the scalar
optimal control problem:

minimize: J(u) :=

∫ 2

0

1
2 [x1(t)]

2 dt (3.102)

subject to: ẋ1(t) = x2(t) + u(t); x1(0) = 1; x1(2) = 0 (3.103)
ẋ2(t) = −u(t); x2(0) = 1; x2(2) = 0 (3.104)
− 10 ≤ u(t) ≤ 10, 0 ≤ t ≤ 2, (3.105)

7The situation is quite similar to NLP problems where one has to guess the set of active constraints, and then check
whether the KKT necessary conditions are satisfied for that active set.
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where the control u is taken in the set of piecewise continuous functions, u ∈ Ĉ [0, 2]. This
problem is linear in u, but nonlinear in x1 through the cost functional.

The Hamiltonian function is given by

H(x, u, λ̃) = 1
2λ0x

2
1 + λ1(x2 + u)− λ2u = 1

2λ0x
2
1 + λ1x2 + (λ1 − λ2)u.

Assuming that (u?,x?,λ?) is an optimal triple for the problem, and that the problem is
normal (i.e., λ0(t) = 1, ∀t), we have

u?(t) =







10 if λ?1(t) < λ?2(t)
−10 if λ?1(t) > λ?2(t)

? if λ?1(t) = λ?2(t),

where

λ̇?1(t) = −Hx1
= −x?1(t)

λ̇?2(t) = −Hx2
= −λ?1(t).

That is, singular control arcs are possible when

Hu = λ?1(t)− λ?2(t) = 0,

over a finite interval of time. Upon successive differentiation of the foregoing condition
with respect to time, we get

0 =
d
dt
Hu = λ̇?1(t)− λ̇?2(t) = −x?1(t) + λ?1(t)

0 =
d2

dt2
Hu = −ẋ?1(t) + λ̇?1(t) = −x?2(t)− u?(t)− x?1(t).

Singular arcs for the problem (3.102–3.105) are therefore of order p = 1, and we have

u?(t) = −x?1(t)− x?2(t).

Moreover, the state and adjoint variables must lie on the singular surface defined by

λ?1(t) = λ?2(t) = x?1(t), (3.106)

along singular arcs. Observe also that

− ∂

∂u

[

d2

dt2
Hu
]

= 1 > 0,

so that the generalized Legendre-Clebsch condition for a minimum holds along singular
arcs.

Since the problem is autonomous,H must be constant along an optimal solution:

1
2x

?
1(t)

2 + λ?1(t) x
?
2(t) + [λ?1(t)− λ?2(t)]u?(t) = K.

In particular, since (3.105) holds along a singular arc, we have

1
2x

?
1(t)

2 + x?1(t) x
?
2(t) = K,
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which gives a 1-parameter family of hyperbolas in the (x1, x2)-space.
Upon application of a numerical optimization procedure, it is found that an optimal

control for the problem (3.102–3.105) consists of 3 arcs:

1. u?(t) = 10, 0 ≤ t ≤ t?1;

2. u?(t) = −x?1(t)− x?2(t), t?1 ≤ t ≤ t?2;

3. u?(t) = −10, t?2 ≤ t ≤ 2.

with the following approximate values for the intermediate times: t?1 ≈ 0.299, and t?2 ≈
1.927. This optimal control, together with the optimal response of the system is represented
in Fig. 3.10. below. Note that this control is discontinuous at the junction points between
singular and a non-singular arcs. Hence, all the necessary conditions of optimality are
satisfied.
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Figure 3.10. Optimal control and response for Example 3.31 – left plot: optimal control vs. time;
right plot: optimal response in the phase space.
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The junction phenomenon for higher-order singular control problems is a notoriously
hard problem, and is still the topic of a great deal of research. In particular, the controls
near high-order singular surface may exhibit a chattering behavior, i.e, the control has an
infinite number of discontinuities in a finite time interval (see, e.g., [58] for more details).

At first sight, one may reasonably expect that a “nice” optimal control problem should
have a “nice” solution, and that most if not all reasonable optimal control problems have
smooth or piecewise smooth solutions. In 1961, A. T. Fuller [21] put this myth to rest by
exhibiting a very simple optimal control problem whose solution chatters.

3.5.5 Optimal Control Problems with Mixed Control-State Inequality
Constraints

Optimal control problems with state inequality constraints arise frequently in practical
applications. These problems are notoriously hard to solve, and even the theory is not
unambiguous, since there exist various forms of the necessary conditions of optimality. We
refer the reader to [25] for a recent survey of the various forms of the maximum principle
for problems with state inequality constraints. In this subsection, we shall consider optimal
control problems with mixed control-state inequality constraints only. Problems with mixed
control-state inequality constraints shall be considered later on in � 3.5.6.

Consider the problem to find a piecewise continuous control u? ∈ Ĉ [t0, T ]nu , with
associated response x? ∈ Ĉ1[t0, T ]nx , and a terminal time t?f ∈ [t0, T ], such that the
following constraints are satisfied and the cost functional takes on its minimum value:

minimize: J(u, tf) :=

∫ tf

t0

`(t,x(t),u(t)) dt (3.107)

subject to: ẋ(t) = f(t,x(t),u(t)); x(t0) = x0; x(tf) = xf (3.108)
gk(t,x(t),u(t)) ≤ 0, k = 1, . . . , ng. (3.109)

In what follows, we shall always assume that the components of g depend explicitly on the
control u, and the following constraint qualification holds:

rank
[

gu diag (g)
]

= ng , (3.110)

along (t,x?(t),u?(t)), t0 ≤ t ≤ t?f . In other words, the gradients with respect to u of all
the active constraints g ≤ 0 must be linearly independent.

A possible way of tackling optimal control problems with mixed inequality constraints
of the form (3.109), is to form a Lagrangian function L by adjoining g to the Hamiltonian
functionH with a Lagrange multiplier vector function µ,

L(t,x,u,λ,µ) := H(t,x,u,λ) + µTg(t,x,u), (3.111)

where

H(t,x,u,λ) := λ̃
T
f̃ (t,x,u) = λ0`(t,x,u) + λTf(t,x,u). (3.112)

The corresponding necessary conditions of optimality are stated in the following theorem:

Theorem 3.33 (Maximum Principle with Mixed Inequality Constraints). Consider the
optimal control problem (3.107–3.109), with fixed initial time t0 and free terminal time tf,
and where `, f , and g are continuous and have continuous first partial derivatives with
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respect to (t,x,u) on [t0, T ]× IRnx × IRnu . Suppose that (u?, t?f ) ∈ C [t0, T ]nu × [t0, T )
is a minimizer for the problem, and let x̃? denote the optimal (extended) response. If the
constraint qualification (3.110) holds, then there exist a (nx + 1)-dimensional piecewise
continuously differentiable vector function λ̃

?
(·) = (λ?0(·),λ?(·)), and a ng-dimensional

piecewise continuous vector function µ?(·), such that (λ̃
?
(t),µ?(t)) 6= 0 for every t ∈

[t0, t
?
f ], and:

(i) the functionH(x?(t),v, λ̃
?
(t)) attains its minimum onU(x?(t), t) at v = u?(t), for

every t ∈ [t0, t
?
f ],

H(t,x?(t),v, λ̃
?
(t)) ≥ H(t,x?(t),u?(t), λ̃

?
(t)), ∀v ∈ U(x?(t), t), (3.113)

where U(x, t) := {u ∈ IRnu : g(t,x,u) ≤ 0};

(ii) the quadruple (u?,x?, λ̃
?
,µ?) verifies the equations

˙̃x
?
(t) = Lλ̃(t,x?(t),u?(t), λ̃

?
(t),µ?(t)) (3.114)

˙̃
λ
?

(t) = −Lx̃(t,x?(t),u?(t), λ̃
?
(t),µ?(t)) (3.115)

0 = Lu(t,x?(t),u?(t), λ̃
?
(t),µ?(t)), (3.116)

at each instant t of continuity of u?;

(iii) the vector functionµ? is continuous at each instant t of continuity of u?, and satisfies

µ?k(t) gk(t,x
?(t),u?(t)) = 0, µ?k(t) ≥ 0, (3.117)

for each k = 1, . . . , ng;

(iv) the relations

λ?0(t) = const. ≥ 0 (3.118)

H(t,x?(t),u?(t), λ̃
?
(t)) = −

∫ t?f

t

Lt(τ,x?(τ),u?(τ), λ̃
?
(τ),µ?(τ)) dτ,

(3.119)

are satisfied at any t ∈ [t0, t
?
f ], and, in particular,H(t?f ,x

?(t?f ),u
?(t?f ), λ̃

?
(t?f )) = 0.

Proof. A proof of the theorem can be found, e.g., in [48] or [23]. See also [25] for discus-
sions.

Similar to problems with simple control constraints of the form u(t) ∈ U , t0 ≤ t ≤ tf,
solutions to optimal control problems with mixed inequality constraints consist of several
constrained and unconstrained arcs, which must be pieced together in order to satisfy all
the necessary conditions. At the junction points between constrained and unconstrained
arcs, the optimal control may or may not be continuous; in the latter case, we get a corner
point.8 In particular, the conditions that must hold at any corner point θ ∈ [t0, t

?
f ] are

x?(θ−) = x?(θ+) (3.120)

λ̃
?
(θ−) = λ̃

?
(θ+) (3.121)

H(θ−,x?(θ),u?(θ−), λ̃
?
(θ)) =H(θ+,x?(θ),u?(θ+), λ̃

?
(θ)), (3.122)

8As noted in � 3.4.3, corners may occur at any point of an optimal trajectory, although they are more likely to occur
at junction points rather than at the middle of unconstrained arcs.
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where θ− and θ+ denote the time just before and just after the corner, respectively; z(θ−)
and z(θ+) denote the left and right limit values of a quantity z at θ, respectively. Since
each component of Lu is also continuous across θ, it follows that µ(t) is continuous if
u?(t) is itself continuous across θ. Unfortunately, there seems to be no a priori method for
determining the existence of corners.

Remark 3.34 (Extension to General State Terminal Constraints). The Maximum Prin-
ciple in Theorem 3.33 can be extended to the case where general terminal constraints are
specified on the state variables (in lieu of the terminal state condition x(tf) = xf) as

ψk(tf,x(tf)) = 0, k = 1, . . . , nψ. (3.123)
κk(tf,x(tf)) ≤ 0, k = 1, . . . , nκ, (3.124)

and a terminal term is added to the cost functional (3.107) as

J(u, tf) :=

∫ tf

t0

`(t,x(t),u(t)) dt+ φ(tf,x(tf)), (3.125)

where φ, ψ, and κ are continuous and have continuous first partial derivatives with respect
to (t,x), for all (t,x) ∈ [t0, T ]× IRnx . Suppose that the terminal constraints (3.123,3.124)
satisfy the constraint qualification

rank

[

ψx 0
κx diag (κ)

]

= nψ + nκ, (3.126)

at (t?f ,x
?(t?f )). Then, in addition to the necessary conditions of optimality given in Theo-

rem 3.33, there exist Lagrange multiplier vectors ν? ∈ IRnψ and ζ? ∈ IRnκ such that the
following transversal conditions hold:

λ?(t?f ) = Φx(t?f ,x
?(t?f )) (3.127)

H(t?f ,x
?(t?f ),u

?(t?f ),λ
?(t?f )) + Φt(t

?
f ,x

?(t?f )) = 0, (3.128)

where Φ := λ?0φ+ ν?Tψ + ζ?
T
κ. Moreover,

ψk(t
?
f ,x

?(t?f )) = 0, (3.129)

for each k = 1, . . . , nψ, and

ζ?k κk(t
?
f ,x

?(t?f )) = 0, ζ?k ≥ 0, (3.130)

for each k = 1, . . . , nκ.

In practice, applying Theorem 3.33 (and Remark 3.34) requires that an assumption
be made a priori on the sequence of (unconstrained and constrained) arcs in the optimal
solution, as well as on the set of active (inequality) terminal constraints. Then, based on
the postulated structure of the optimal solution, one shall check whether a pair (u(·),x(·)),
along with vector functions λ̃(·), µ(·), and Lagrange multiplier vectors ν?, ζ?, can be
found such that all of the necessary conditions of optimality are satisfied. If this is the case,
then the corresponding control is a candidate optimal control for the problem; otherwise,
one needs to investigate alternative solution structures, i.e., postulate different sequences
of arcs and/or sets of active terminal constraints. An illustration of these considerations in
given in Example 3.35 hereafter.
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Example 3.35 (Optimal Control Problem with Mixed Inequality Constraints). Con-
sider the scalar optimal control problem:

minimize: J(u) :=

∫ 1

0

u(t) dt (3.131)

subject to: ẋ(t) = −u(t); x(0) = −1 (3.132)
u(t) ≤ 0, x(t)− u(t) ≤ 0, 0 ≤ t ≤ 1, (3.133)

where the control u is taken in the set of piecewise continuous functions, u ∈ Ĉ [0, 1].
Observe that both path constraints are of mixed type, and can be rewritten as

x(t) ≤ u(t) ≤ 0, 0 ≤ t ≤ 1. (3.134)

The objective being to minimize the integral of u(t), and since u(t) is lower bounded by
the state x(t) via (3.134), a rather natural guess for the optimal solution is to consider that
the mixed state constraint x(t)−u(t) ≤ 0 is active for each 0 ≤ t ≤ 1. We shall now check
whether the necessary conditions of optimality in Theorem 3.33 can be satisfied under this
choice.

◦ Let us suppose first that the problem (3.131–3.133) is not abnormal, and take λ0(t) =
1 throughout. That is, the Hamiltonian function for the problem reads

H(x, u, λ) = u(1− λ),

and the Lagrangian function, obtained by adjoining the mixed inequality constraints,
reads

L(x, u, λ,µ) = H(x, u, λ) + µ1(x− u) + µ2u = (1− λ− µ1 + µ2)u+ µ1x.

◦ The mixed state constraint x(t)−u(t) ≤ 0 being active for each 0 ≤ t ≤ 1, we have

u?(t) = x?(t),

and, from (3.132),
x?(t) = −e−t, 0 ≤ t ≤ 1.

x?(t) and, hence, u?(t) are thus negative at any time, and from the complementarity
slackness condition (3.117) we get

µ?2(t) = 0, 0 ≤ t ≤ 1.

In turn, the stationarity condition (3.116) yields

0 = 1− λ?(t)− µ?1(t) + µ?2(t) = 1− λ?(t)− µ?1(t),

from which we get
µ?1(t) = 1− λ?(t), 0 ≤ t ≤ 1.

◦ From (3.115), the differential equation giving the adjoint variable λ? is

λ̇?(t) = −µ?1(t) = λ?(t)− 1,
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and the terminal state being unspecified, from (3.127), we get

λ?(1) = 0.

Therefore,

λ?(t) = 1− et−1 < 1, 0 ≤ t ≤ 1,

and,

µ?1(t) = et−1 > 0, 0 ≤ t ≤ 1,

hence satisfying the dual condition (3.117).

◦ At this point, the condition (3.119)imposing that the Hamiltonian function be constant
along (u?, x?, λ?) is readily verified,

H(x?(t), u?(t), λ?(t)) = u?(t)(1− λ?(t)) = −e−1, 0 ≤ t ≤ 1.

◦ Finally, the minimum condition (3.113),

u?(t) =

{

0 if λ?(t) > 1
x?(t) if λ?(t) < 1,

is satisfied by the control u?(t) = x?(t), since λ?(t) < 1 at each 0 ≤ t ≤ 1.

Overall, we have checked that all the necessary conditions of optimality are satisfied pro-
vided that the mixed state constraint x(t) − u(t) ≤ 0 is active at any time. Therefore,
u?(t) = x?(t) = −e−t, 0 ≤ t ≤ 1, is a candidate optimal control for the problem (3.131–
3.133).

3.5.6 Optimal Control Problems with Pure State Inequality Constraints

Besides mixed state inequality constraints, it is common to require that one or several state
variables remain nonnegative during the system operation, e.g.,

xi(t) ≥ 0, t0 ≤ t ≤ tf,

for i ∈ {1, . . . , nx}. More generally, optimal control problems may have so-called pure
state inequality constraints of the form

hk(t,x(t)) ≤ 0, k = 1, . . . , nh.

Pure state constraints are, in principle, more difficult to deal with than mixed control-state
constraints, since h does not explicitly depend on u, and x can be controlled only indirectly
via propagation through the state equations. It is therefore convenient to differentiate h
with respect to t as many times as required until it contains a control variable. For the jth
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constraint, we have

h0
j (t,x,u) := hj(t,x)

h1
j (t,x,u) :=

d
dt
h0
j (t,x,u) = (hj)x(t,x) f(t,x,u) + (hj)t(t,x) (3.135)

h2
j (t,x,u) :=

d
dt
h1
j (t,x,u) = (h1

j )x(t,x,u) f(t,x,u) + (h1
j )t(t,x,u)

...

hpj (t,x,u) :=
d
dt
hp−1
j (t,x,u) = (hp−1

j )x(t,x,u) f (t,x,u) + (hp−1
j )t(t,x,u).

(3.136)

Then, hj is said to be of order9 pj if

(hij)u(t,x,u) = 0 for 0 ≤ i ≤ pj − 1, (h
pj
j )u(t,x,u) 6= 0.

A number of definition are in order. With respect to the jth constraint hj ≤ 0, a
subinterval (θ1, θ2) ⊂ [t0, tf], with θ1 < θ2, is called an interior interval of a feasible
response x if hj(t,x(t)) > 0 for all t ∈ (θ1, θ2). An interval [θ1, θ2], with θ1 < θ2, is
called a boundary interval if hj(t,x(t)) = 0 for all t ∈ [θ1, θ2]. An instant θ1 is called an
entry time if there is an interior interval ending at t = θ1 and a boundary interval starting
at θ1; correspondingly, θ2 is called an exit time if a boundary interval ends at θ2 and an
interior interval starts at θ2. If the response x just touches the boundary at time θc, i.e.,
hj(θc,x(θc)) = 0, and x is in the interior just before and after θc, then θc is called a contact
time. Taken together, entry, exit, and contact times are junction times. These definitions
are illustrated on Fig. 3.11. below.
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Figure 3.11. Junction types for optimal control problems with pure state inequality constraints.

9Notice that, unlike singular control arcs, the order p of a state inequality constraints is equal to the minimum
number of time differentiations needed to have u appear explicitely in the expression of hp.
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We begin with the case of first-order state inequality constraints, pj = 1, i = 1, . . . , nh.
Let (u?,x?) be an optimal pair for the problem

minimize: J(u, tf) :=

∫ tf

t0

`(t,x(t),u(t)) dt (3.137)

subject to: ẋ(t) = f(t,x(t),u(t)); x(t0) = x0; x(tf) = xf (3.138)
hk(t,x(t)) ≤ 0, k = 1, . . . , nh. (3.139)

We shall always assume that the constraint qualification

rank
[

h1
u diag (h)

]

= nh, (3.140)

holds at each (t,x?(t),u?(t)); i.e., the gradients of h1
j with respect to u of the active

constraints hj = 0, j ∈ {1, . . . , nh}, must be linearly independent along an optimal
trajectory.

Suppose that [θ1, θ2] is a boundary interval for the jth constraint. In order to prevent
hj from being violated, we must have that h1

j (t,x
?(t),u?(t)) ≤ 0 for each t ∈ [θ1, θ2].

Hence, one can formally impose the constraint

h1
j (t,x

?(t),u?(t)) ≤ 0 whenever hj(t,x?(t)) = 0.

A convenient way of associating a multiplier functionηj(·) to the former condition constraint
is by imposing the complementarity slackness condition ηj(t)hj(t,x

?(t)) = 0, which
makes ηj(t) = 0 each time hj(t,x?(t)) < 0. This also motivates the following definition
of the Lagrangian function:

L1(t,x,u,λ,η) := H(t,x,u,λ) + ηTh1(t,x,u). (3.141)

Since the constraints are adjoined indirectly to form the Lagrangian (i.e., they are adjoined
via their first time derivative), this approach is called the indirect adjoining approach; it
was first suggested by Pontryagin [41].10

At the entry time θ1 of a boundary interval for the jth constraint, it is necessary to require
that the interior-point constraint

hj(θ1,x
?(θ1)) = 0 (3.142)

be satisfied, i.e., the phase velocity is tangential to the boundary at θ1. These extra constraints
give rise to jump conditions for the adjoint variables and the Hamiltonian function as

λ?(θ−1 )
T

= λ?(θ+1 )
T

+ πj(θ1) (hj)x(θ1,x
?(θ1)) (3.143)

H[θ−1 ] =H[θ+1 ]− πj(θ1) (hj)t(θ1,x
?(θ1)), (3.144)

where πj(θ1) ∈ IR is a Lagrange multiplier. Condition (3.144) determines the entry time
θ1, while πj(θ1) is so chosen that the interior point constraint (3.142) is satisfied; note that

10Another approach referred to as the direct adjoining approach has also been proposed for dealing with state
inequality constrained optimal control problems. In contrast to the indirect approach, the Lagrangian function L
is formed by adjoining directly the constraints (3.139) as

L0(t,x,u, λ, η) := H(t,x,u,λ) + ηTh(t,x).

We refer the interested reader to [25] for a broad discussion of the direct adjoining approach and for comparison
and links between with the indirect approach. See also [27].
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πj(θ1) influences (3.142) only indirectly by propagating through the adjoint equations via
(3.143). Note also that from the tangency condition (3.142) holding at the entry point θ1

could have been placed at the exit point θ2 instead; we would then have that λ? andH are
discontinuous at θ2, and continuous at θ1.

Overall, these considerations are formalized in the following theorem:

Theorem 3.36 (Maximum Principle with First-Order Pure Inequality Constraints).
Consider the optimal control problem (3.137–3.139), with fixed initial time t0 and free
terminal time tf. Here, ` is continuous and has continuous first partial derivatives with
respect to (t,x,u) on [t0, T ]× IRnx × IRnu; f , and h are continuous and have continuous
partial derivatives with respect to (t,x,u) up to second order on [t0, T ] × IRnx × IRnu .
Suppose that (u?, t?f ) ∈ C [t0, T ]nu × [t0, T ) is a minimizer for the problem, and let x̃?

denote the optimal (extended) response. If the constraint qualification (3.140) holds with
p1 = · · · = pnh = 1, then there exist a (nx + 1)-dimensional piecewise continuous vector
function λ̃

?
(·) = (λ?0(·),λ?(·)) whose continuous segments are continuously differentiable,

a nh-dimensional piecewise continuous vector function η?(·), and Lagrange multiplier
vectorsπ?(θ1) ∈ IRnh at each point θ1 of discontinuity of λ̃

?
, such that (λ̃

?
(t),η?(t)) 6= 0

for every t ∈ [t0, t
?
f ], and:

(i) the function H(x?(t),v, λ̃
?
(t)) attains its minimum on U 1(x?(t), t) at v = u?(t),

for every t ∈ [t0, t
?
f ],

H(t,x?(t),v, λ̃
?
(t)) ≥ H(t,x?(t),u?(t), λ̃

?
(t)), ∀v ∈ U1(x?(t), t), (3.145)

where U1(x, t) := {u ∈ IRnu : h1(t,x,u) ≤ 0 if h(t,x) = 0};

(ii) the quadruple (u?,x?, λ̃
?
,η?) verifies the equations

˙̃x
?
(t) = L1

λ̃
(t,x?(t),u?(t), λ̃

?
(t),η?(t)) (3.146)

˙̃
λ
?

(t) = −L1
x̃(t,x?(t),u?(t), λ̃

?
(t),η?(t)) (3.147)

0 = L1
u(t,x?(t),u?(t), λ̃

?
(t),η?(t)), (3.148)

on each interval of continuity of u? and λ̃
?
;

(iii) the vector function η? satisfies the conditions

η?k(t) hk(t,x
?(t)) = 0, η?k(t) ≥ 0, η̇?k(t) ≤ 0, (3.149)

for each k = 1, . . . , nh;

(iv) at any entry/contact time θ1, the adjoint function and the Hamiltonian function may
have discontinuities of the form

λ?(θ−1 )
T

= λ?(θ+1 )
T

+ π?(θ1)
T
hx(θ1,x

?(θ1)) (3.150)

H[θ−1 ] =H[θ+1 ]− π?(θ1)Tht(θ1,x
?(θ1)), (3.151)

where the Lagrange multiplier vector π?(θ1) satisfies the conditions

π?k(θ1) hk(θ1,x
?(θ1)) = 0, π?k(θ1) ≥ 0, π?k(θ1) ≥ η?k(θ+1 ), (3.152)
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for each k = 1, . . . , nh;

(v) the relations

λ?0(t
?
f ) ≥ 0 (3.153)

H(t?f ,x
?(t?f ),u

?(t?f ), λ̃
?
(t?f )) = 0, (3.154)

are satisfied at the terminal time.

Proof. A proof of the theorem can be found, e.g., in [32]. See also [25] for discussions.

Note the additional complementarity slackness condition η̇?k(t) ≤ 0, k = 1, . . . , nh, in
(3.149), which imposes that the multiplier function ηk(·) be nondecreasing on boundary
intervals of hk, and can only jump upwards in the case it is discontinuous. This condition
is in fact absent in early papers on inequality state constraints, yet its omission may may
lead to spurious extremals as shown by [53]. Also omitted in the literature is the necessary
condition π?k(θ1) ≥ η?k(θ+1 ), k = 1, . . . , nh, in (3.152) – see related discussion in [25].

Remark 3.37 (Mixed Sets of Pure and Mixed State Inequality Constraints). Apart
from the extension of Theorem 3.36 to problems with general state constraints for which
the reader is referred to Remark 3.34 above, many optimal control problems of interest
contain mixed sets of pure and mixed inequality constraints:

minimize: J(u, tf) :=

∫ tf

t0

`(t,x(t),u(t)) dt (3.155)

subject to: ẋ(t) = f(t,x(t),u(t)); x(t0) = x0; x(tf) = xf (3.156)
gk(t,x(t),u(t)) ≤ 0, k = 1, . . . , ng (3.157)
hk(t,x(t)) ≤ 0, k = 1, . . . , nh. (3.158)

As a recipe for isolating candidate optimal controls (u?,x?) for such problems, one can
adjoin the mixed inequality constraints to the Lagrangian function as

L(t,x,u,λ,µ) := H(t,x,u,λ) + µTg(t,x,u) + ηTh1(t,x), (3.159)

and restrict the control region U 1 as

U1(x, t) := {u ∈ IRnu : g(t,x,u) ≤ 0 and h1(t,x,u) ≤ 0 if h(t,x) = 0}.

If the strengthened constraint qualification

rank

[

gu diag (g) 0

h1
u 0 diag (h)

]

= ng + nh (3.160)

holds, then the necessary conditions of optimality are those given in Theorem 3.36, as well
as the additional conditions

µ?k(t) gk(t,x
?(t),u?(t)) = 0, µ?k(t) ≥ 0, (3.161)

for the ng-dimensional piecewise continuous vector function µ?(·) associated with the
mixed inequality constraints (3.157). However, the reader should be aware that a general
theorem addressing the problem (3.155–3.158), in the context of the indirect adjoining
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approach, was still unavailable until recently in the literature [25] (only various subsets of
the conditions stated above have been proved).

A simple optimal control problem with mixed and first-order pure state constraints is
treated subsequently in Example 3.38.

Example 3.38 (Optimal Control Problem with Both Mixed and First-Order Pure In-
equality Constraints). Consider the following scalar optimal control problem, with % ≥ 0:

minimize: J(u) :=

∫ 3

0

e−%tu(t) dt (3.162)

subject to: ẋ(t) = u(t); x(0) = 0 (3.163)
0 ≤ u(t) ≤ 3, 0 ≤ t ≤ 3 (3.164)

1− x(t)− (t− 2)2 ≤ 0, 0 ≤ t ≤ 3, (3.165)

with % ≥ 0, where the control u is taken in the set of piecewise continuous functions,
u ∈ Ĉ [0, 3].

By inspection, it can be argued that a candidate optimal control u? and its optimal
response x? for the problem (3.162–3.162) are as follows:

u?(t) =







0, 0 ≤ t ≤ 1−

−2(t− 2), 1+ ≤ t ≤ 2−

0, 2+ ≤ t ≤ 3,
x?(t) =







0, 0 ≤ t ≤ 1−

1− (t− 2)2, 1+ ≤ t ≤ 2−

1, 2+ ≤ t ≤ 3.

The control u? and its response x? are shown in Fig. 3.12. below. In the first arc, u?(t) is
at its lower bound so that the integrand of the cost functional takes on its least value. At
time t = 1, the pure state constraint h := 1 − x − (t − 2)2 becomes active, and u?(t)
must be increased so that h does not become violated; minimizing the integrand of the cost
functional in the second arc then consists in taking u?(t) so that h(t, x?(t)) = 0. Finally,
u?(t) is again at its lower bound in the third arc, since the state constraint has become
inactive at t = 2.

Letting g1 := u − 3 and g2 := −u, and noting that the state constraint h is first-order
with

h1(t, x, u) = ẋ− 2(t− 2) = u− 2(t− 2),

the strengthened constraint qualification (3.160) reads

rank





1 u?(t)− 3 0 0
−1 0 −u?(t) 0
1 0 0 u?(t)− 2(t− 2)



 = 3 (3.166)

It is readily checked that this rank condition holds for the pair (u?, x?), along each arc.
Hence, it makes sense to check whether (u?, x?) satisfies the necessary conditions of opti-
mality presented in Theorem 3.36 and Remark 3.37.

◦ Let us suppose first that the problem (3.131–3.133) is not abnormal, and take λ0(t) =
1 throughout. The Hamiltonian function for the problem reads

H(x, u, λ) = u(e−%t + λ).
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Moreover, the state constrainth being first-order, the Lagrangian function is obtained
by adjoining both h1 and the control bounds to the Hamiltonian function as

L1(x, u, λ,µ, η) = H(x, u, λ)− µ1(u− 3)− µ2u+ η(u− 2(t− 2)).

◦ From (3.147), we have
λ̇?(t) = −L1

x = 0,

with λ?(3) = 0 since the terminal state x?(3) is free. Because t = 1 is an entry time
for the state constraint h, the condition (3.150) yield

λ?(1−) = λ?(1+) + π?(1) hx(1, x
?(1)) = −π?(1)

where π?(1) is obtained from (3.151) as

π?(1) = e−%.

Notice, in particular, that π?(1) ≥ 0, as imposed by (3.152). Overall, λ? is thus given
by

λ?(t) =

{

−e−%, 0 ≤ t ≤ 1−

0, 1+ ≤ t ≤ 3.

◦ The mixed state constraint u?(t) − 3 ≤ 0 remaining inactive at any time, (3.161)
gives

µ?1(t) = 0, 0 ≤ t ≤ 3.

◦ From the stationarity condition (3.148), we get

0 = L1
u = e−%t + λ?(t)− µ?2(t)− η(t),

which, together with (3.149) and (3.161), yields:

µ?2(t) =







e−%t − e−%, 0 ≤ t ≤ 1−

0, 1+ ≤ t ≤ 2−

e−%t, 2+ ≤ t ≤ 3,
η?(t) =







0, 0 ≤ t ≤ 1−

e−%t, 1+ ≤ t ≤ 2−

0, 2+ ≤ t ≤ 3.

Observe that the non-negativity requirements η(t) ≥ 0 and µ2(t) ≥ 0 are satisfied at
any time, as well as the necessary conditions η̇(t) ≤ 0 and η(1+) ≤ π(1).

◦ Finally, since λ?(t) + e−%t > 0 for each t > 0, and since 0 < u?(t) < 3
whenever h(t, x?(t)) = 0, the control u?(t) achieves the least possible value of
H(t, x?(t), ·, λ?) on the set

U1(t, x) =

{

{u ∈ IR : 0 ≤ u ≤ 3}, 0 ≤ t ≤ 1− or 2+ ≤ t ≤ 3
{u ∈ IR : −2(t− 2) ≤ u ≤ 3}, 1+ ≤ t ≤ 2−.

That is, the minimum condition (3.145) is satisfied.

Overall, we have checked that all the necessary conditions of optimality are satisfied for
the pair (u?, x?). Thus, u? is a candidate optimal control for the problem (3.131–3.133).

Note that one obtains a contact point at t = 2 by considering the same example with
% < 0.
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Figure 3.12. Optimal control and response for Example 3.38.

We now turn to optimal control problems having pure state inequality constraints of
order p ≥ 2. For simplicity, we shall assume that there is only one state constraint in the
problem (3.137–3.139), i.e., nh = 1. Following the same approach as for first-order state
constraints (indirect adjoining approach), the Lagrangian function is now given by

Lp(t,x,u,λ,η) := H(t,x,u,λ) + ηhp(t,x,u), (3.167)

with hp defined in (3.136), and the control region U p is now defined as

Up(x, t) := {u ∈ IRnu : hp(t,x,u) ≤ 0 if h(t,x) = 0}.
Further, for a pth order constraint, the following interior-point constraints

h(θ1,x(θ1) = 0

h1(θ1,x(θ1) = 0

...

hp−1(θ1,x(θ1) = 0,

must be satisfied at the entry time θ1 of a boundary interval, and p Lagrange multipliers
π1, . . . , πp are thus associated to these constraints subsequently.

Then, assuming that the functions f and h are continuously differentiable with respect to
all their arguments up to order p− 1 and p, respectively, it can be shown that the necessary
conditions of optimality given in Theorem 3.36 are modified as follows (see [25]):

◦ In (i) and (ii), the Lagrangian function L1 and the control region U 1 are substituted
by Lp and Up, respectively;

◦ In (iii), the condition (3.149) is replaced by

η?(t) h(t,x?(t)) = 0; (−1)i(η?)(i)(t) ≥ 0, i = 0, . . . , p; (3.168)

◦ (iv) is changed to the requirement that at any entry time θ1, the adjoint function and
the Hamiltonian function may have discontinuities of the form

λ?(θ−1 )
T

= λ?(θ+1 )
T

+

p
∑

i=1

πi
?
(θ1) h

i−1
x (θ1,x

?(θ1)) (3.169)

H[θ−1 ] =H[θ+1 ]−
p
∑

i=1

πi
?
(θ1) h

i−1
t (θ1,x

?(θ1)), (3.170)
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where the Lagrange multipliers π1?(θ1), . . . , π
p?(θ1) satisfy the conditions

πi
?
(θ1) h(θ1,x

?(θ1)) = 0, πi
?
(θ1) ≥ 0, i = 1, . . . , p; (3.171)

Moreover, at any contact time θc, (3.169), (3.170), and (3.171) hold with πi(θc) = 0,
for i ≥ 2, and we have the additional conditions

πi
?
(θc)

{

≥
=

}

(−1)p−i(η?)(p−k)(θ+c ), for
{

i = 1,
i = 2, . . . , p;

(3.172)

◦ (v) remains unchanged.

Note that all of the above conditions can be generalized readily to problems having
multiple state inequality constraints h1(t,x(t)) ≤ 0, . . . , hnh(t,x(t)) ≤ 0, possibly of
different orders p1, . . . , pnh .11 In particular, these conditions remain valid in the first-order
case p1 = · · · = pnh = 1, and thus encompass those given in Theorem 3.36.

Finally, we close the discussion on high-order inequality state constraints by reemphasiz-
ing the fact that such constraints give rise to highly complex, possibly ill-behaved, control
problems. Similar to high-order singular control problems (e.g., the Fuller problem, see

� 3.5.4), an optimal control may exhibit a chattering behavior near high-order boundary arcs
(either at the entry or at the exit point), i.e., the costate variables may have countably many
jumps. An example of this behavior can be found in [43], for a problem having a third-order
inequality state constraint.

3.6 NUMERICAL METHODS FOR OPTIMAL CONTROL PROBLEMS

Unless the system equations, along with the cost functional and the constraints, of the
problem at hand are rather simple, numerical methods must be employed to solve optimal
control problems. With the development of economical, high speed computers over the last
few decades, it has become possible to solve complicated problems in a reasonable amount
of time.

Presenting a survey of numerical methods in the field of optimal control is a daunting
task. Perhaps the most difficult aspect is restricting the scope of the survey to permit a
meaningful discussion within a few pages only. In this objective, we shall focus on two
types of numerical methods, namely, direct solution methods ( � 3.6.3) and indirect solution
methods ( � 3.6.2). The distinction between direct and indirect methods can be understood
as follows. A direct method attempts to find a minimum to the objective function in the
feasible set, by constructing a sequence of points converging to that minimum. In contrast,
an indirect method attempts to find a minimum point ’indirectly’, by solving the necessary
conditions of optimality. For this reason, indirect methods are often referred to as PMP-
based methods or variational methods in the literature. Other approaches not discussed
herein include dynamic programming methods [18, 37] and stochastic optimization methods
[5].

In many numerical methods, one needs to calculate the values of functionals subject to
the differential equations. Moreover, since these functionals depend on parameters (e.g.,
as a result of the parameterization of the control trajectories), there is much interest in
evaluating their gradients with respect to the parameters. Before presenting the numerical

11A complex example involving a state third-order inequality constraint, two first-order inequality constraints, and
a control constraint can be found in [13].
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methods for optimal control, we shall therefore give a close look to the evaluation of
parameter-dependent functionals and their gradients in � 3.6.1.

3.6.1 Evaluation of Parameter-Dependent Functionals and their Gradients

In this subsection, our focus is on a Mayer type functional F defined as

F(p) := φ(x(tf),p), (3.173)

where p ∈ P ⊂ IRnp is a vector of time-invariant parameters, and the state x(t) ∈ IRnx is
described by a set of parametric ODEs

ẋ(t) = f(t,x,p), t0 ≤ t ≤ tf; x(t0) = h(p). (3.174)

In what follows, `, f and h are always assumed continuous in (t,x,p) with continuous first
partial derivatives with respect to (x,p), for (t,x,p) ∈ [t0, tf] × IRnx × P . Remind that
both Lagrange and Bolza type functionals can be converted into the Mayer form by adding
an extra state variable and differential equation to (3.174) that correspond to the integrand
of the integral term, and then considering the value of this extra state at final time (see � 3.2.3
on p. 108).

Assuming that a unique solution x(t;p) to the system (3.174) exists for a given p ∈ P ,
we wish to calculate the value F(p) as well as its gradient ∇pF(p). Obtaining F(p)
requires that the IVP (3.174) be numerically integrated, and a brief overview of numerical
methods for IVPs in ODEs is thus given in � 3.6.1.1. On the other hand, the computation
of ∇pF(p) is less straightforward, and we shall present three methods for doing this: the
finite differences approach ( � 3.6.1.2), the sensitivity approach ( � 3.6.1.3), and the adjoint
approach ( � 3.6.1.4).

3.6.1.1 Initial Value Problems The problem of evaluating the functional F for given
values p ∈ P of the parameters consists of computing the value of x(tf) that satisfies

ẋ(t) = f (t,x,p),

for each t0 ≤ t ≤ tf, from the initial value x(t0) = h(p). Numerical methods for
solving the foregoing IVP are relatively mature in comparison to other fields in numerical
optimization. Any numerical methods for ODEs generate an approximate solution step-by-
step in discrete increments across the interval of integration, in effect producing a discrete
sample of approximate values xi of the solution function x(t). Most schemes can be
classified as either one-step or multi-step methods.12

One-Step Methods. A popular family of one-step methods is the Runge-Kutta (RK)
schemes. Given an estimate xi of the states at time ti, an new estimate xi+1 at time
ti+1 := ti + hi is obtained as

xi+1 = xi +
K
∑

j=1

ωjf ij ,

where
f ij := f

(

ti + hiτi,x
i + hi

∑K
k=1 αjkf ik,p

)

, 1 ≤ j ≤ K,

12An excellent website illustrating numerical methods for solving IVPs in ODEs can be found at http://www.
cse.uiuc.edu/eot/modules/ode/.
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with 0 ≤ τ1 ≤ · · · ≤ τK ≤ 1, andK ≥ 1 denotes the number of stages in the scheme. RK
schemes differ in the choice of the parameters ωi, τi, and αij , which are most conveniently
represented in the so-called Butcher diagram:

ω1 α11 · · · α1K

...
...

. . .
...

ωK αK1 · · · αKK

β1 · · · βK

RK schemes are said to be explicit if the Butcher diagram is such that αjk = 0 for j ≤ k),
and implicit otherwise. Three common examples of RK schemes are the following:

Euler’s Explicit: Classical Runge-Kutta Explicit: Trapezoidal Implicit:
K = 1 K = 4 K = 2

0 0

1

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

0 0 0

1 1
2

1
2

1
2

1
2

An obvious appeal of an explicit scheme is that the computation of each integration step
can be performed without iteration; that is, given the value of xi at time ti, the value of
xi+1 at the next time ti+1 follows directly from available values of f . In contrast, for an
implicit scheme, the unknown value xi+1 appears nonlinearly, e.g., the Hermite-Simpson
implicit method requires

Fi := xi+1 − xi − hi
2

[

f (ti+1,x
i+1,p) + f(ti,x

i,p)
]

= 0. (3.175)

Computing xi+1 from given values of ti, ti+1 and xi thus requires solving the nonlinear
expression (3.175) to drive the defect Fi to zero. The iterations required to solve this
equation are called the corrector iterations. An initial guess to begin the iteration is usually
provided by a so-called predictor step. There is considerable latitude in the choice of
predictor and corrector schemes. For some well-behaved differential equations, a single
predictor/corrector step is required. On the other hand, it may be necessary to perform
multiple corrector iterations when the differential equations are stiff;13 this is generally
done based on Newton’s method (see � 1.8.2, p. 34).

Linear Multi-step Methods. The general form of a K-step linear multi-step method is
given by

xi+1 =

K
∑

j=1

αjx
i−j+1 + h

K
∑

j=0

βjf
i−j+1, (3.176)

13An ODE whose solutions decay rapidly towards a common, slowly-varying solution is said to be stiff. Explicit
methods are generally inefficient for solving stiff ODEs because their stability region is relatively small, which
forces the step size to be much smaller than that required to achieve the desired accuracy. Implicit methods require
more work per step, but their significantly larger stability regions permit much larger steps to be taken, so they
are often much more efficient than explicit methods of comparable accuracy for solving stiff ODEs. (A numerical
method is said to be stable if small perturbations do not cause the resulting numerical solutions to diverge without
bound.)
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where αj and βj are specified constants, xi is the approximate solution at time ti, and
f i := f (ti,x

i,p). If βN = 0, the method is explicit, otherwise it is implicit. Note that the
K-past integration steps are assumed to be equally spaced.

The most popular linear multi-step methods are based on polynomial interpolation, and
even methods which are not based on interpolation use interpolation for such purposes as
changing the step size. These methods come in families. Particularly popular for non-stiff
problems is the Adams family, and for stiff problems, the backward differentiation formula
(BDF) family.

◦ In a K-step Adams-Bashforth method, the solution is advanced at each step by inte-
grating the interpolant of the derivative values atK previous solution points. Specif-
ically, for approximate solution points (ti−K+1,x

i−K+1), . . . , (ti,x
i), the approxi-

mate solution value xi+1 at time ti+1 = ti + h is given by

x(ti+1) = x(ti) +

∫ ti

ti+1

F(t) dt,

where F(t) is the unique polynomial of degree K − 1 interpolating
f(ti−K+1,x

i−K+1,p), . . . , (ti,x
i,p). That is, we have α1 = 1, and αj = 0 for

j > 1, in the general form (3.176). A K-step Adams-Moulton method is derived
similarly to a Adams-Bashforth method, except that it interpolates f at the unknown
value ti+1 as well.

◦ In a K-step BDF method, the solution is advanced at each step by interpolating K
previous solution points along with the (as yet unknown) new solution point, differ-
entiating that interpolant, and requiring the derivative to match the ODE at the new
point. Specifically, for approximate solution points (ti−K+1,x

i−K+1), . . . , (ti,x
i),

the approximate solution value xi+1 at time ti+1 = ti + h is determined by solving
the implicit equation

Ẋ(ti+1) = f(ti+1,x
i+1,p)

for xi+1, where X(t) is the unique polynomial of degree K that interpolates
(ti−K+1,x

i−K+1), . . . , (ti,x
i), (ti+1,x

i+1). Hence, we have β0 6= 0, and βj = 0
for j > 1, in the general form (3.176). Note that the simplest member of this family
is the implicit Euler method (i.e., α1 = 1 and β0 = 1):

xi+1 = xi + hf i+1.

BDF methods have relatively large stability regions, so they are particularly suitable
for solving stiff ODEs.

For a K-step method, the method is applied for i ≥ K − 1, and K initial values
x0, . . . ,xK−1 are needed to start it up. A usual strategy is at a starting point is to gradually
increase the method’s number of steps, starting fromK = 1. Another approach consists of
using an appropriate RK method.

Differential-Algebraic Equations. Up to this point, the prototypical IVP (3.174) refers
to an explicit ODE system,

ẋ(t) = f(t,x(t),p). (3.177)
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However, a more general formulation for an ODE system is the so-called implicit form,

F(t,x(t), ẋ(t),p) = 0,

where the Jacobian matrix Fẋ is assumed to be nonsingular for all argument values in an
appropriate domain. In principle, it is often possible to solve for ẋ in terms of t, x and p,
obtaining the explicit form (3.177). However, this transformation may not always be easy
or cheap to realize. Also, in general, there may be additional questions of existence and
uniqueness of the solutions.

Another extension of explicit ODEs is in systems of the form

ẋ(t) = f (t,x(t),y(t),p) (3.178)
0 = g(t,x(t),y(t),p), (3.179)

where the ODEs (3.178) now depend on additional variables y(t), and the pair (x(t),y(t))
is forced to satisfy the algebraic constraints (3.179). Such systems are called differential
algebraic equations (DAEs) in semi-explicit form. More generally, DAEs can be specified
in fully-implicit form,

F(t, z(t), ż(t),p) = 0, (3.180)

with the new variable zT := (xT,yT), and where the Jacobian matrix Fż is now singular.
Note that the general theory for DAEs is much more recent and less developed than

for ODEs, and it is still subject to intense research activity [11]. Since a DAE involves a
mixture of differential and algebraic equations, one may hope that applying analytical time
differentiations to a given system and eliminating, as needed, repeatedly if necessary, will
yield an explicit ODE system for all the unknown variables. This turns out to be the case in
most situations (unless the problem is singular). In particular, the number of differentiations
needed for this transformation is called the index of the DAE system.14 According to this
definition, ODEs have index 0. An index-2 DAE system is illustrated in Example 3.39
below.

Example 3.39 (Index-2 DAE System). Consider the DAE system

z1(t)− q(t) = 0

ż1(t)− z2(t) = 0.

where q(t) is a given smooth function. Differentiating the first equation gives

z2(t) = ż1(t) = q̇(t),

and, by differentiating the resulting equation, we then get

ż2(t) = z̈1(t) = q̈(t).

Hence, the index is 2 since two rounds of differentiation were needed.

14Formally, the index of a DAE system of the form (3.180) is defined as the minimum number of times that part or
all of the equations must be differentiated in order to obtain an ODE system.
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The index of a DAE system is closely connected to the question of initial conditions
specification. While n initial conditions must be given to fully specify the solution of an
ODE system of size n, a DAE system of size n will in general havem degrees of freedom,
with m being anywhere between 0 and n. Which m pieces of information are needed to
determine the DAE solution may be a difficult issue, or at least not immediately obvious. In
other words, one must specify consistent initial conditions in the sense that the constraints of
the system must be satisfied. To illustrate it, consider the DAE system in Example 3.39. The
variable z1 at initial time must satisfy the obvious constraint z1(t) = q(t), but there is also
a hidden constraints z2(t) = q̇(t) which the solution must satisfy at any time. Therefore,
the only possible consistent initial conditions are z1(t0) = q(t0), z2(t0) = q̇(t0), i.e., the
DAE system has zero degree of freedom!

The special case of semi-explicit DAEs (3.178,3.179) is encountered in many practical
problems. It is readily shown that a sufficient condition for semi-explicit DAEs to have
index 1, is that the Jacobian matrix gy be nonsingular. In the index-1 case, one can then
distinguish between the differential variables x(t) and the algebraic variables y(t).

Remark 3.40 (Link between DAEs and the Euler-Lagrange Equations). The Euler-
Lagrange equations (3.13–3.15), which are part of the necessary conditions of optimality for
optimal control problems, are DAEs in semi-explicit form. Provided that the Hamiltonian
function is nonsingular (i.e.,Huu is not trivially equal to zero, see � 3.5.4), these equations
have index 1, and the differential variables are thus clearly identified to be the states and
adjoints, whereas the algebraic variables correspond to the controls. But if the Hamiltonian
function is now singular, the Euler-Lagrange equations have high index (≥ 2), which implies
that the problem contains hidden constraints. These extra constraints correspond precisely
to the equations defining the singular surface, i.e.,

Hu = 0,
d
dt
Hu = 0, . . . ,

d2p

dt2p
Hu = 0,

where p denotes the order of singularity. Obviously, there exists strong connections be-
tween high-index Euler-Lagrange equations and singularity optimal control problems. The
situation is similar for optimal control problems with high-order state inequality constraints
(see � 3.5.6).

Numerical methods for solving DAEs are mostly limited to index-1 systems. Fortunately,
this is the case for many practical systems. For higher-index systems to be handled, it
is necessary to first transform the DAEs into index-1 form (e.g., by applying successive
differentiation), before a solution can be computed. The first general technique for solving
fully implicit index-1 DAEs was proposed by Gear in 1971, It utilizes BDF methods similar
to those used for ODEs, i.e., the derivative ż is replaced by the derivative of the polynomial
interpolating the solution computed over the preceding K-steps along with the (as yet
unknown) new solution point. The simplest example of a BDF method is the implicit Euler
method that replaces (3.180) with

F

(

ti+1, z
i+1,

zi+1 − zi

h
,p

)

= 0.

The resulting nonlinear system in the variable zi+1 is usually solved by some form of
Newton’s method at each time step.

Implementation and Software. Regardless of whether a one-step or multi-step method
is utilized, a successful implementation must address the accuracy of the solution. How
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well does the discrete solution xi for i = 0, 1, . . ., produced by the integration scheme
agree with the true solution x(t)? All well-implemented integration schemes incorporate
some mechanism for adjusting the integration step-size and/or the order of the method to
control the integration error.15

A variety of excellent and widely used software for IVPs is readily available. Major
differences between codes lie in the numerical scheme used, whether index-1 DAEs can be
accommodated, and whether sparse systems can be handled efficiently (especially useful
for large-scale systems). A number of free numerical integration codes is given in Tab. 3.1.

Table 3.1. Popular codes doing numerical integration of ODEs/DAEs.

Solver Website Lic. Characteristics

DASSL http://www.engineering.ucsb.edu/

~cse/software.html

free BDF schemes, ODEs and index-1 DAEs,
dense or banded Jacobian

DASPK2.0 http://www.engineering.ucsb.edu/

~cse/software.html

free same as DASSL, designed for sparse,
large-scale systems

CVODE http://acts.nersc.gov/sundials/ free Adams-Moulton and BDF schemes,
ODEs only, designed for dense or sparse,
large-scale systems

IDA http://acts.nersc.gov/sundials/ free BDF schemes, ODE and index-1 DAE
problems, consistent initialization

The codes listed in Tab. 3.1. are stand-alone (either in C or fortran77). Moreover,
various integration schemes are available in the MATLAB � environment, both for ODEs
(Runge-Kutta, Adams, BDF schemes) and index-1 DAEs (BDF schemes).

3.6.1.2 Gradients via Finite Differences We now turn to the problem of calculat-
ing the gradient ∇pF(p) of the functional (3.173), subject to the IVP in ODEs (3.174).
The easiest way of getting an estimate of ∇pF(p) is to consider a forward difference
approximation so that:

∇pjF(p) ≈
F(p1, . . . , pj + δpj , . . . , pnp)− F(p)

δpj
, (3.181)

for each j = 1, . . . , np. In practice, the variations δpj can be chosen as

δpj = εa + pjε
r,

where εa and εr are small absolute and relative perturbations parameters, respectively; often,
εa and εr are chosen as the square-roots of the absolute and relative tolerances used in the
numerical integration code.

A practical procedure for calculating both the value and the gradient of F is as follows:

Initial Step
Integrate the ODEs (3.174) once with the actual parameter values p;
Calculate the value of F(p).

Loop: j = 1, . . . , np

15It should be stressed that error control mechanism in numerical integration schemes is inherently local, i.e., it
can only guarantee the accuracy of the solution from one step to the next. That is, if the numerical scheme takes
many integration steps, the error accumulates and there is no guarantee that the discrete solution will be a good
approximation or even close to the desired solution in the end.
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Set pi := pi, i 6= j; pj := pj + δpj ;
Integrate the ODEs (3.174) once with the perturbed parameter values p;
Calculate the value of F(p), and

∇pjF(p) ≈ F(p)− F(p)

δpj
.

End Loop

Observe that a gradient calculation with the forward difference approach requires np+1
integrations of the ODEs (3.174), which can be computationally expensive when np is
large. On the other hand, however, this approach does not bring any additional complexity
other than integrating the ODEs for the system, and applies readily to the case of (index-1)
DAEs. A more accurate approximation (2nd-orderapproximation)can be obtained by using
centered finite differences as

∇pjF(p) ≈
F(p1, . . . , pj + δpj , . . . , pnp)− F(p1, . . . , pj − δpj , . . . , pnp)

2δpj
, (3.182)

although this requires 2 functional evaluations per parameter, i.e., an overall 2× np ODEs
integrations for a single gradient evaluation.

A major limitation of the finite differences approach lies in its accuracy. It is easy to
see why the difference formulas (3.181) do not provide accurate values. If δpj is small,
then cancellation error reduces the number of significant figures in the gradient estimate,
especially when the function values are obtained with limited accuracy from a numerical
integration code. On the other hand, if δpj is not small, then truncation errors (i.e., higher-
order terms) become significant. Even if δpj is optimally chosen, it is well known that
∇pF(p) will be accurate to only about 1

2 of the significant digits of F(p) (or 2
3 if the cen-

tered formula (3.182) is used). This motivates the forward and adjoint (reverse) sensitivity
approaches of gradient calculation presented subsequently.

3.6.1.3 Gradients via Forward Sensitivity Analysis Consider the IVP in ODEs
(3.174) for given parameter values p ∈ P ,

ẋ(t;p) = f(t,x(t;p),p); x(t0;p) = h(p). (3.183)

and suppose that (3.183) has a unique solution x(t;p), t0 ≤ t ≤ tf. The functions f and
h being continuously differentiable with respect to (x,p) and p, respectively, the solution
x(t;p) of (3.174) is itself continuously differentiable with respect to p in a neighborhood
of p, at each t ∈ [t0, tf] (see Appendix A.5.3). In particular, the first-order state sensitivity
functions xpj (t;p), j = 1, . . . , np, are given by (A.15), or equivalently,

ẋpj (t;p) = fx(t,x(t;p),p) xpj (t;p) + fpj (t,x(t;p),p); xpj (t0;p) = hpj (p).
(3.184)

The foregoing equations are called the sensitivity equations with respect to parameter pj ; in
general, they are linear, non-homogeneous differential equations,and become homogeneous
in the case where f pj = 0.

Once the state sensitivity functions are known at t = tf, and since φ is continuously
differentiable with respect to x and p, the gradient ∇pF(p) of the functional (3.173) at p
can be calculated as

∇pjF(p) = φx(x(tf;p),p)
T
xpj (tf;p) + φpj (x(tf;p),p), (3.185)
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for each j = 1, . . . , np.
A practical procedure calculating both the value and the gradient of F at p is as follows:

State and Sensitivity Numerical Integration: t0 → tf

ẋ(t) = f(t,x(t),p); x(t0) = h(p)

ẋp1(t) = fx(t,x(t),p) xp1(t) + fp1(t,x(t),p); xp1(t0) = hp1(p)

...
...

ẋpnp (t) = fx(t,x(t),p) xpnp (t) + f pnp (t,x(t),p); xpnp (t0) = hpnp (p)

Function and Gradient Evaluation:

F(p) = φ(x(tf),p)

∇p1F(p) = φx(x(tf),p)
T
xp1(tf) + φp1(x(tf),p)

...

∇pnpF(p) = φx(x(tf),p)Txpnp (tf) + φpnp (x(tf),p)

Observe that the state and state sensitivity equations are solved simultaneously, so that
a local error control can be performed on both the state and state sensitivity variables.
However, the size of the state/sensitivity system grows proportionally to the number of
states and parameters as (nx + 1) × np, which can lead to computationally intractable
problems if both nx and np are large. In response to this, effective methods have been
developed in recent years that take advantage of the special structure of the problem. These
methods are usually based on implicit multi-step integration schemes (see � 3.6.1.1, 163),
and exploit the fact that the sensitivity equations (3.184) are linear and all share the same
Jacobian matrix with the original system (3.183). Three well-established methods, which
differ in the way the corrector formula is solved while sharing the same predictor step, are
the following:

◦ Staggered direct methods [31]: At each time step, the states are computed first by
the nonlinear corrector step, and the state sensitivities are then obtained by solving
a linear system. This method is sometimes considered to be inefficient because it
requires that the Jacobian matrix be evaluated and factored16 at every time step.

◦ Simultaneous corrector methods [39]: The state and sensitivity variables are com-
puted simultaneously by the nonlinear corrector step. This method is more efficient
because it evaluates and factors the Jacobian matrix only when necessary.

◦ Staggered corrector method [20]: This method is similar to the staggered direct
method, except that it uses the factorization of the Jacobian matrix at some past step
to solve the linear sensitivity system. This saves on the number of factorizations of
the Jacobian matrix, which can be the most expensive part of the computations for
systems having many state variables but relatively few parameters.

16Here, we refer to the LU factorization of the Jacobian matrix, which is used in the corrector step for calculating
the inverse of the Jacobian matrix
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Note that all these methods apply equally well for fully implicit, index-1 DAE systems
of the form (3.180). In this case the sensitivity DAEs read:

Fx xpj + Fẋ ẋpj + Fpj = 0, (3.186)

for each j = 1, . . . , np. Obviously, consistent initial state sensitivities must be specified to
the sensitivity DAEs; they are obtained upon direct differentiation of the initial conditions
of the original DAEs.

A variety of excellent and widely used codes is available for forward sensitivity analysis
of IVPs in ODEs and DAEs, such as those listed in Tab. 3.2. hereafter. Note that the version
7.4 of MATLAB � does not have a function doing forward sensitivity analysis.

Table 3.2. Popular codes doing forward sensitivity analysis of ODEs/DAEs.

Solver Website Lic. Characteristics

DSL48S http://yoric.mit.edu/dsl48s.html free for
acad.

based on DASSLa, ODEs and index-1
DAEs, sparse Jacobian

DASPK3.0 http://www.engineering.ucsb.edu/

~cse/software.html

free for
acad.

based on DASSLa, ODEs, index-1
DAEs and Hessenberg index-2 DAEs

CVODES http://acts.nersc.gov/sundials/ free based on CVODEa, ODEs only

aSee Tab. 3.1.

3.6.1.4 Gradients via Adjoint Sensitivity Analysis Some problems require the
gradient of a functional with respect to a large number of parameters. For these problems,
particularly if the number of state variables is also large, both the finite differences approach
( � 3.6.1.2) and the forward sensitivity approach ( � 3.6.1.3) are intractable. This motivates the
third class of methods, namely adjoint sensitivity analysis (also called reverse sensitivity
analysis), for computing the gradient of a functional [19].

Consider the functional (3.173), subject to the IVP in ODEs (3.174), at a point p ∈ P .
Analogous to � 3.6.1.3, we shall suppose that (3.183) has a unique solution x(t;p), t0 ≤
t ≤ tf. Then, adjoining the differential equations to the functional using smooth multiplier
functions λ ∈ C1[t0, tf]

nx , we form the augmented functional

F̃(p) := φ(x(tf;p),p) +

∫ tf

t0

λ(t)T [f(t,x(t;p),p)− ẋ(t,p)] dt.

Since ẋ = f (t,x,p) at each t ∈ [t0, tf], the gradient ∇pjF(p), i = 1, . . . , np, is obtained
by applying the chain rule of differentiation:

∇pjF(p) =∇pj F̃(p) (3.187)

= φpj (x(tf),p) + φx(x(tf),p)Txpj (tf) (3.188)

+

∫ tf

t0

λ(t)
T [

fpj (t,x(t),p) + fx(t,x(t),p) xpj (t)− ẋpj (t)
]

dt.

By integration by parts, we have
∫ tf

t0

λ(t)
T
ẋpj (t) dt =

[

λ(t)
T
xpj (t)

]tf

t0
−
∫ tf

t0

λ̇(t)
T
xpj (t) dt.
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Thus, (3.188) becomes

∇pjF(p) = φpj (x(tf),p) + λ(t0)
T
hpj (p) + [φx(x(tf),p)− λ(tf)]

T
xpj (tf)

+

∫ tf

t0

[

λ(t)Tfpj (t,x(t),p) +
[

fx(t,x(t),p)T
λ(t) + λ̇(t)

]T
xpj (t)

]

dt.

The foregoing expression being verified for any smooth function λ(·), it is convenient to
choose λ(·) so as to eliminate the terms depending on the sensitivity variables xpj :

λ̇
?
(t) = −fx(t,x(t),p)

T
λ?(t); λ?(tf) = φx(x(tf),p),

from which we obtain

∇pjF(p) = φpj (x(tf),p) + λ?(t0)
T
hpj (p) +

∫ tf

t0

λ?(t)
T
fpj (t,x(t),p) dt. (3.189)

for each j = 1, . . . , np. Interestingly, the expression of ∇pjF(p) can be seen as the sum
of 3 contributions: (i) the direct influence of the parameter pj on the cost functional; (ii)
the influence of pj through the initial conditions; and (iii) the influence of pj through the
system dynamics.

A practical procedure for calculating both the value and the gradient of F at p is as
follows:

State Numerical Integration: t0 → tf

ẋ(t) = f(t,x(t),p); x(t0) = h(p);

Store the state values x(t) at mesh points, t0 < t1 < t2 < · · · < tM = tf.

Adjoint Numerical Integration: tf → t0

λ̇(t) = − fx(t,x(t),p)T
λ(t); λ(tf) = φx(x(tf),p)

q̇1(t) = − f p1(t,x(t),p)
T
λ(t); q1(tf) = 0

...

q̇np(t) = − f pnp (t,x(t),p)T
λ(t); qnp(tf) = 0;

Evaluate the right-hand-sides of the adjoint equations by interpolating the state values
x(t), tk ≤ t ≤ tk+1, between mesh points x(tk) and x(tk+1).

Function and Gradient Evaluation:

F(p) = φ(x(tf),p)

∇p1F(p) = φp1 (x(tf),p) + λ?(t0)
T
hp1(p) + q1(t0)

...

∇pnpF(p) = φpnp (x(tf),p) + λ?(t0)
T
hpnp (p) + qnp(t0)
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In number of remarks are in order. The state and adjoint equations are integrated forward
and backward in time, respectively, from their natural initial/terminal conditions. This way,
the adjoint equations are stable provided that the state equations are themselves stable [15].
However, integrating the adjoint equations backward in time requires that the state values
be “reconstructed” at each time instant. This can be done by storing all the necessary
information about the state variables at each time step during the forward integration,
and then interpolating these values during the backward integration; possible interpolation
schemes are linear interpolation (requires x(t) at each time step only), or cubic Hermite
interpolation (requires both x(t) and ẋ(t) at each time step).

It is convenient to introduce quadrature variables qi, i = 1, . . . , np, and appending the
corresponding equations to the adjoint system, for calculating the integral term in (3.189).
Most numerical solver allow dealing with quadrature variables very efficiently since they
do not enter into the Jacobian matrix.

In terms of computational efficiency, the cost of the forward sensitivity method ( � 3.6.1.3)
is roughly proportional to the number np of sensitivity parameters, and is insensitive to
the number of functionals (e.g., F1, . . . ,FnF

). For the adjoint sensitivity method, on the
other hand, the computational cost is proportional to the number nF of functionals and
is insensitive to the number np of parameters. The adjoint sensitivity method is there-
fore advantageous over the forward sensitivity method when the number of sensitivity
parameters is large, and the number of functionals is small. Observe also that the adjoint
sensitivity method has a disadvantage that it can only compute the gradient of a specified
functional;,unlike the forward sensitivity approach which provide the state sensitivities at
any time, the intermediate results of the adjoint variables cannot be exploited.

Remark 3.41 (Extension to Functionals Defined at Multiple Time Instants). A useful
extension of the adjoint sensitivity method described previously is in the situation where
the functional depends on the state values at multiple (fixed) time instants,17

F′(p) :=

N
∑

k=1

φk(x(tk),p), (3.190)

where t0 < t1 < t2 < · · · < tN = tf, subject to the IVP in ODEs (3.174). It can be shown
that the gradient ∇pjF

′(p), i = 1, . . . , np, at p ∈ P is given by

∇pjF(p) =

N
∑

k=1

[

φkpj (x(tk),p) +

∫ tk

tk−1

λ?(t)
T
fpj (t,x(t),p) dt

]

+ λ?(t0)
T
hpj (p),

where the adjoint variables λ? are the solutions to the ODEs

λ̇
?
(t) = −fx(t,x(t),p)

T
λ?(t),

from the terminal condition
λ?(tN ) = φNx (x(tN ),p),

and satisfying the jump conditions

λ?(t−k ) = λ?(t+k ) + φkx(x(tk),p).

17Such functionals arise frequently, e.g., in parameter identification problems where the objective is to calculate
the parameter values minimizing the gap between a set of measurements and the model prediction, at given time
instants.
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The extension of the adjoint method to the case of index-1, fully implicit DAE systems
has also been proposed recently (see [15] for details).

Although they are less straightforward to implement than forward sensitivity methods,
mainly due to the need to store the state profile, adjoint methods are not difficult to automate.
Several codes are available for adjoint sensitivity analysis of IVPs in ODEs and DAEs. We
list some of these codes in Tab. 3.2. below. Note that the version 7.4 of MATLAB � does
not have a function doing adjoint sensitivity analysis.

Table 3.3. Popular codes doing adjoint sensitivity analysis of ODEs/DAEs.

Solver Website Lic. Characteristics

DASPKadjoint http://www.engineering.ucsb.edu/

~cse/software.html

free for
acad.

based on DASPK3.0a (still under
development)

CVODES http://acts.nersc.gov/sundials/ free based on CVODEb, ODEs only

aSee Tab. 3.2.
bSee Tab. 3.1.

3.6.2 Indirect Methods

Having presented numerical methods for calculating the values and gradients of general
functionals, we are now ready to investigate numerical methods for solving optimal control
problems. Our focus in this subsection is on indirect methods. Essentially, indirect methods
attempt to solve optimal control problems by seeking a solution to the (closed system of)
necessary conditions of optimality (NCOs), such as those presented earlier in � 3.4 and � 3.5.

Many indirect methods use iterative procedures based on successive linearization to find
a solution to the system of NCOs. A nominal solution is chosen that satisfies part of the
NCOs, then this nominal solution is modified by successive linearization so as to meet the
remaining NCOs. Popular indirect methods for optimal control include quasi-linearization
methods, gradient methods such as control vector iteration, and indirect shooting methods
(see [12]). Only the latter class of methods shall be considered herein. We shall first
present the indirect shooting method for optimal control problems having terminal equality
constraints only ( � 3.6.2.1), and then discuss its extensions to encompass problems with
terminal and/or path inequality constraints ( � 3.6.2.2).

3.6.2.1 Indirect Shooting Methods To set forth the basic ideas of indirect shooting
methods, we consider first the relatively simple class of problems treated in � 3.4.5: Find
u? ∈ C1[t0, T ]nu and t?f ∈ [t0, T ) to

minimize: J(u, tf) :=

∫ tf

t0

`(t,x(t),u(t)) dt+ φ(tf,x(tf)) (3.191)

subject to: ẋ(t) = f (t,x(t),u(t)); x(t0) = x0 (3.192)
ψk(tf,x(tf)) = 0, k = 1, . . . , nψ. (3.193)

Provided that the problem (3.191–3.193) is normal and (u?, t?f ) is an optimal solution,
there must exist a quintuple (u?(·),x?(·),λ?(·),ν?, t?f ) which satisfies the Euler-Lagrange



174 OPTIMAL CONTROL

equations

ẋ?(t) =Hλ(t,x?(t),u?(t),λ?(t)); x?(t0) = x0 (3.194)

λ̇
?
(t) = −Hx(t,x?(t),u?(t),λ?(t)); λ?(t?f ) = Φx(t?f ,x

?(t?f )) (3.195)
0 =Hu(t,x(t),u(t),λ(t)), (3.196)

for all t0 ≤ t ≤ t?f , along with the transversal conditions

ψ(t?f ,x
?(t?f )) = 0 (3.197)

Φt(t
?
f ,x(t?f )) +H(t?f ,x

?(t?f ),u
?(t?f ),λ

?(t?f )) = 0, (3.198)

with Φ := φ+ ν?Tψ andH := `+ λ?
T
f .

Observe that if the adjoint values λ?(t0) at initial time, the Lagrange multipliers ν?,
and the terminal time t?f were known, the Euler-Lagrange equations could be integrated,
all together, forward in time. Hence, the idea of indirect shooting is to guess the values
of λ?(t0), ν?, and t?f , and then iteratively improve these estimates to satisfy the adjoint
terminal conditions and the transversal conditions. (For this reason, this approach is also
referred to as boundary conditions iteration (BCI) in the literature.) In other words, one
wants to find (λ?(t0),ν

?, t?f ) such that

b(λ?(t0),ν
?, t?f ) :=





λ? + φx + ν?Tφx

ψ

`+ λ?
T
f + φt + ν?φt





t=t?f

= 0.

In particular, a Newton iteration can be used to improve the estimates. An algorithm
implementing the indirect shooting approach for optimal control problems having equality
terminal constraints is given in the following.

Initialization Step
Let ε > 0 be a termination scalar, and choose initial values λ0

0, ν0, t0f . Let k = 0
and go to the main step.

Main Step

1. Calculate the defect b(λk0 ,ν
k, tkf ) in the boundary and transversal conditions.

If ‖b(λk0 ,ν
k, tkf )‖ < ε, stop;

2. Calculate the gradients ∇λ0
b(λk0 ,ν

k, tkf ), ∇νb(λk0 ,ν
k, tkf ),∇tfb(λk0 ,ν

k, tkf )
of the defect;

3. Solve the linear system







∇λ0
b(λk0 ,ν

k, tkf )
T

∇νb(λk0 ,ν
k, tkf )

T

∇tfb(λk0 ,ν
k, tkf )

T







T




dkλ
dkν
dktf



 = −b(λk0 ,ν
k, tkf )

to get the directions dkλ, dkν and dktf
.
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4. Compute the new estimates

λk+1
0 = λk0 + dkλ

νk+1 = νk + dkν

tk+1
f = tkf + dktf

.

5. Replace k ← k + 1, and go to step 1.

A number of remarks are in order.

◦ Obviously, the same procedure applies in the absence of terminal constraints, or if
the terminal time is fixed. It suffices to reduce the number of free variables, and keep
only the relevant necessary conditions in the defect function b.

◦ Instead of iterating on the adjoint initial conditions λk0 , one may as well guess the
state terminal conditions xkf = xk(tkf ), and integrate the Euler-Lagrange equations
backward in time (starting from the guessed terminal time tkf ).

◦ At each Newton iterate, one must supply the gradient of the functionals b(λk0 ,ν
k, tkf ).

Although any of the methods described in � 3.6.1.2 through � 3.6.1.4 can be used, the
forward sensitivity analysis approach is often the most efficient, since the number of
parameters is usually small, and there are as many functionals as parameters. Note
that, for problems with unspecified final time, it is necessary to make a change of
variables so that the time range be fixed, e.g., to [0, 1]; this way, the final time t?f
becomes a parameter of the problem, and both the forward and adjoint sensitivity
analysis can be conducted. Yet another alternative to avoid gradient calculation is to
apply a quasi-Newton method using a DFP or BFGS update scheme for estimating
the Jacobian matrix. (see � 1.8.3.2).

An illustration of the indirect shooting method is presented in Example 3.42 below.

Example 3.42 (Indirect Shooting Method). Consider the following scalar optimal control
problem with terminal state equality constraint:

minimize: J(u) :=

∫ 1

0

1
2u(t)

2 dt (3.199)

subject to: ẋ(t) = u(t)[1− x(t)]; x(0) = −1; x(1) = 0, (3.200)

with u ∈ C [0, 1]. Provided that u? is an optimal for this problem, there must exist a
quadruple (u?, x?, λ?, ν?) such that

x?(t) = Hλ = u?(t)[1− x?(t)]; x?(0) = −1; x?(1) = 0

λ?(t) = −Hx = u?(t)λ?(t); λ?(1) = ν?

0 = Hu = u(t) + λ(t)[1− x(t)].
We now apply the indirect shooting approach to find one such quadruple. A full-step Newton
algorithm is used here to find the unspecified adjoint conditions λ?(0) and the Lagrange
multiplier ν? such that

b(λ?(0), ν?) =

(

λ(1)− ν
x(1)

)

= 0,
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starting from the initial guess (λ0
0, ν

0) = (0, 0); moreover, the Jacobian matrix of b is
calculated via forward sensitivity analysis.

The resulting Newton iterates are shown on the left plot of Fig. 3.13.. Clearly, the
terminal state is not affected by the value of the Lagrange multiplier. Note that, due to
the quadratic rate of convergence of the Newton algorithm, the boundary conditions are
satisfied within 10−4 after 4 iterations in this case. We also display the optimal control,
state and adjoint trajectories on the left plot of Fig. 3.13.; the optimal control is constant
over [0, 1] in this example.
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Figure 3.13. Illustration of the indirect shooting method in Example 3.42. Top plot: Newton
iterates; bottom plot: Optimal trajectories

The main difficulty with indirect shooting methods is finding a first estimate of the adjoint
variables λ0

0 (and possibly the final time t0f ) that produce a solution reasonably close to the
specified conditions λ0(t0f ) at final time. The reason of this difficulty lies in the high
sensitivity of extremal solution to small changes in the unspecified boundary conditions.
Since the Euler-Lagrange equations are strongly coupled together, it is not unusual for
the numerical integration, with poor initial guesses, to produce ‘wild’ trajectories in the
state/adjoint space. Besides starting difficulty, the indirect shooting approach becomes
more difficult in the presence of inequality state constraints as discussed subsequently.
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3.6.2.2 Indirect Shooting with Inequality State Constraints For those simple
optimal control problems having no inequality constraints and whose solution consists of a
single arc, the indirect shooting method proceeds by iteratively refining the estimates of the
adjoint variables at initial time, together with the Lagrange multipliers and the terminal time.
The situation gets more complicated for problems containing either terminal or path inequal-
ity constraints. In this case, one has to postulate the sequence of constrained/unconstrained
arcs and the active terminal constraints a priori, then calculate the control, state, adjoint,
and multiplier functions that satisfy the Euler-Lagrange equations, and finally check that
the multipliers satisfy all of the sign conditions. If part of the sign conditions are not met,
then the postulated sequence of arcs cannot be optimal; a new sequence of arcs must be
selected, and the optimization procedure is repeated until all the NCOs are satisfied.

Particularly difficult to solve are problems having inequality state constraints, since the
adjoint trajectories may be discontinuous at the entry time of boundary arcs. In this case, the
necessary conditions of optimality yield a nonlinear multi-point boundary value problem
(MPBVP), i.e., additional conditions must also hold at interior points (see � 3.5.6).

Besides the need of specifying rather accurate estimates for the adjoint variables at initial
time and entry/contact times, another severe drawback of indirect shooting methods is that
detailed a priori knowledge of the stucture of the optimal solution must be available. In
particular, the direct methods presented in the following subsection do not require such an a
priori knowledge, and can be used to identify the various types of arcs present in an optimal
solution, as well as the active set of terminal constraints.

3.6.3 Direct Methods

Numerical methods that avoid the drawbacks of indirect methods can be found in the so-
called direct optimization methods, which have been studied extensively over the last 30
years, and have proved to be powerful tools for solving practical optimal control problems.
The basic idea of direct optimization methods is to discretize the control problem, and then
apply NLP techniques to the resulting finite-dimensional optimization problem. These
methods use only control and/or state variables as optimization variables and dispense
completely with adjoint variables. Moreover, adjoint variables can be obtained by post-
optimal calculations using the Lagrange multipliers of the resulting nonlinear optimization
problem [14]. Another advantage is that they can be readily extended to problems described
by DAE systems. Of course, an obvious drawback of direct methods is that they provide
suboptimal solutions only, due to the discretization of the control profiles.

In this section, we shall present two popular direct methods, namely, the sequential
method (3.6.3.1) and the simultaneous method (3.6.3.2), which differ in the level of dis-
cretization. The pros and cons of either methods will be discussed, and several illustrative
examples will be given. In order to set forth the principles of direct methods, we shall
consider the following optimal control problem throughout:
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Problem 3.43. Find u? ∈ Ĉ1[t0, tf]
nu and v? ∈ IRnv to

minimize: J(u) :=

∫ tf

t0

`(t,x(t),u(t),v) dt+ φ(x(tf),v) (3.201)

subject to: ẋ(t) = f(t,x(t),u(t),v); x(t0) = h(v) (3.202)
ψj(x(tf),v) = 0, j = 1, . . . , nψ (3.203)
κj(x(tf),v) ≤ 0, j = 1, . . . , nκ (3.204)
gj(t,x(t),u(t),v) ≤ 0, j = 1, . . . , ng (3.205)

u(t) ∈ [uL,uU ], v ∈ [vL,vU ]. (3.206)

In this formulation, the optimization horizon is fixed. However, free final time problems
can be easily handled by normalizing the time horizon, and considering the actual final time
tf as an extra time-invariant parameter in the time-invariant parameter vector v.

3.6.3.1 Direct Sequential Methods In direct sequential methods, the control vari-
ables u(·) are parameterized by a finite set of parameters, and the optimization is carried
out in the parameter space; hence, this approach is often referred to as control vector pa-
rameterization (CVP) in the literature.

A convenient way to parameterize the controls is by subdividing the optimization horizon
[t0, tf] into ns ≥ 1 control stages,

t0 < t1 < t2 < · · · < tns = tf,

and using low-order polynomials on each interval, so that

u(t) = U
k(t,ωk), tk−1 ≤ t ≤ tk.

withωk ∈ IRnkω . Clearly, different orders may be used for different control variables and/or
for different control intervals. For simplicity, we shall assume here that the same polynomial
order M is employed for each control variable in all stages.

In practice, Lagrange polynomials are often employed to approximate the controls. In
stage k, the jth control variable is then given by

uj(t) = Ukj (t,ωk) =
M
∑

i=0

ωkijφ
(M)
i (τ (k)), tk−1 ≤ t ≤ tk (3.207)

where τ (k) =
t−tk−1

tk−tk−1
∈ [0, 1] stands for the normalized time in stage k, and φ(M)

i (·)
denotes the Lagrange polynomial of order M ,18

φ
(M)
i (τ) :=















1, if M = 0
M
∏

q=0
q 6=i

τ − τq
τi − τq

, if M ≥ 1, (3.208)

18Lagrange polynomials have the property that φ
(M)
i (τq) = δi,q . Hence, at each collocation point τq , q =

0, . . . , M , we have:
uj(tk−1 + τq(tk − tk−1)) = ωk

qj .
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with collocation points 0 ≤ τ0 < τ1 < · · · < τM ≤ 1. Note that piecewise constant
controls are obtained for M = 0, and piecewise linear controls for M = 1.

◦ The choice of the set of normalized points τi used for construction of the Lagrange
polynomials does not affect the solution obtained. However, to a certain extent, the
choice of some points may be dictated by the need to enforce the control variable
bounds given in (3.206). For piecewise linear controls (M = 1), it is useful to set
τ0 = 0 and τ1 = 1, in which case the bounds on variable uj(t) in stage k can be
enforced simply through

uLj ≤ ωkij ≤ uUj , i = 0, 1.

In fact, bounds can also be enforced for piecewise quadratic or cubic controls through
inequality constraints expressed in terms of the parameters ωi,j,k. However, such
bounding is problematic for polynomials of higher order.

◦ For some applications, it may be desirable to enforce some degree of continuity in
the control profiles across stage boundaries. Continuity of the jth control variable
between stages k − 1 and k can be achieved simply by constraints of the form

ωk−1
Mj = ωk0j , if τ0 = 0 and τM = 1.

Higher-order continuity can also be enforced by adding linear constraints derived
upon differentiating the Lagrange polynomials with respect to time.

Examples of control profile of various degrees and continuity orders are shown in Fig. 3.14.
below.

PSfrag replacements
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u(t)

t0 t1 tk tns−1 tns = tf

piecewise constant

piecewise linear with continuity

piecewise linear without continuity

piecewise quadratic with continuity

Figure 3.14. Examples of control variable profiles.



180 OPTIMAL CONTROL

Upon parameterization of the controls by (3.207), the problem (3.201–3.206) is trans-
formed into a finite dimensional optimization problem of the following form:

minimize:
ns
∑

k=1

∫ tk

tk−1

`(t,x(t),Uk(t,ωk),v) dt+ φ(x(tns),v) (3.209)

subject to: ẋ(t) = f(t,x(t),Uk(t,ωk),v), tk−1 ≤ t ≤ tk, k = 1, . . . , ns (3.210)
x(t0) = h(v) (3.211)
ψ(x(tns),v) = 0 (3.212)
κ(x(tns),v) ≤ 0 (3.213)

g(t,x(t),Uk(t,ωk),v) ≤ 0, tk−1 ≤ t ≤ tk, k = 1, . . . , ns (3.214)

ωk ∈ [ωL,ωU ], v ∈ [vL,vU ], (3.215)

where the optimization parameters are (ω1, . . . ,ωns ,v). Observe that the path inequality
constraints (3.214) consist of an infinite number of constraints, since they must hold at each
t0 ≤ t ≤ tf. Several approaches have been suggested to make path constraints tractable:

◦ Transcription as integral constraints [54]: One possible measure of the violation of
the jth path constraint (3.214) is

Gj(ω
1, . . . ,ωns ,v) :=

ns
∑

k=1

∫ tk

tk−1

max{0; gj(t,x(t),Uk(t,ωk),v)}2 dt.

However, this transcription has the disadvantage that the equality constraint so ob-
tained, Gj = 0, does not satisfy the usual constraint qualification because ∇Gj = 0
whenever Gj = 0 (see Remark 1.52, p. 25). A possible workaround consists of
relaxing the equality constraint as

Gj ≤ ε,
where ε > 0 is a small nonnegative constant. Although this makes the problem
regular, slow convergence is often observed in practice.

◦ Discretization as interior-point constraints [57]: Another straightforward technique
is to approximate the path inequality constraints (3.214) by imposing pointwise in-
equality constraints,

gj(tk,q ,x(tk,q),U
k(tk,q ,ω

k),v) ≤ 0,

at a given set of points tk,q ∈ [tk−1, tk], in each stage k = 1, . . . , ns. A disadvantage
of this approach is that a rather large number of points tk,q might be necessary to
ensure that the path constraints (3.214) are actually not violated between consecutive
tk,q’s. A hybrid approach combining the discretization approach with the former
transcription approach is also possible.

With these reformulations, the parameterized problem (3.209–3.215) consists of a finite
number of functionals in either the Mayer or the Lagrange form, subject to an IVP in
ODEs. For fixed values of the parameters, one can thus calculate the values of the objective
and constraint functionals by using standard numerical integration algorithms ( � 3.6.1.1).
Further, the gradient of the objective and constraint functionals can be calculated with the
sensitivity equations of the ODE system ( � 3.6.1.3) or by integration of the adjoint equations
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( � 3.6.1.4). Overall, one can therefore apply the numerical methods for NLP problems
presented in � 1.8, such as SQP, in order to find optimal values p? for the parameters. The
direct sequential procedure is illustrated in Fig. 3.15. below and its application is illustrated
in Example 3.44.

OR

PSfrag replacements
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Figure 3.15. Direct sequential methods.

Example 3.44 (Direct Sequential Method). Consider the following scalar optimal control
problem:

minimize: J(u) :=

∫ 1

0

(

[x1(t)]
2 + [x2(t)]

2 + %[u(t)]2
)

dt (3.216)

subject to: ẋ1(t) = x2(t); x1(0) = 0 (3.217)
ẋ2(t) = −x2(t) + u(t); x2(0) = − 1 (3.218)

x2(t) + 0.5− 8[t− 0.5]2 ≤ 0, 0 ≤ t ≤ 1 (3.219)
− 20 ≤ u(t) ≤ 20, 0 ≤ t ≤ 1, (3.220)

with u ∈ C [0, 1], and % ≥ 0. A rapid analysis of this problems shows that the inequality
state constraint is of order p = 1. Moreover, the control problem is nonsingular for % > 0,
and singular for % = 0; we investigate these two situations.

Case A: % = 5× 10−3. The direct sequential approach is applied for piecewise constant
controls, and ns = 10, 20, 40, and 100 stages. In each case, the gradients are
calculated via forward sensitivity analysis, and a SQP solver is used to solve the
NLP problem. Note also that the state constraint (3.219) is transcribed as an integral
constraint, which is then relaxed as an inequality constraint

∫ 1

0

max{0;x2(t) + 0.5− 8[t− 0.5]2}2 dt ≤ ε,
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with ε = 10−6.

The results of the direct sequential approach are presented in Fig. 3.16., with the
optimal piecewise controls u? and the optimal response x?2 shown on the left and
right plots, respectively. The corresponding optimal cost values are reported the
following table:

ns 10 20 40 100

J(u?) 1.79751 × 10−1 1.71482 × 10−1 1.69614 × 10−1 1.69161 × 10−1

Observe that the reduction in the optimal cost value is negligible when ns ≥ 40
stages; this behavior is in fact typical of control parameterization methods. However,
by refining the control profile, one can obtain a better idea of the sequence of con-
strained/unconstrained arcs within the optimal solution. While it is unclear which
arcs compose the solution for ns = 10, it becomes obvious, e.g., for ns = 100,
that we have three arcs: the first and third arcs are (nonsingular) interior arcs; and
the second arc is a boundary arc for the state inequality constraint. Furthermore,
the optimal control appears to be continuous at both the entry and exit times of the
boundary arc. To confirm it, a possibility would be to apply the indirect shooting
method ( � 3.6.2.1), by using the present results as initial guess, and check whether all
the necessary conditions of optimality are satisfied.

Case B: % = 0. The results of the direct sequential approach, obtained with the same as-
sumptions as in case A, are presented in Fig. 3.16.. The corresponding optimal cost
values are reported the following table:

ns 10 20 40 100

J(u?) 1.13080 × 10−1 0.97320 × 10−1 0.96942 × 10−1 0.96893 × 10−1

Similar to case A, the improvement of the optimal cost value becomes marginal
for ns ≥ 40. (The optimal cost values are lower here since the control is no longer
penalized in the cost functional.) Interestingly, the optimal solution is now composed
of four arcs. By inspection, it is not hard to see that: the first arc is a boundary arc
for the control constraint u(t) ≤ 20; the second and fourth arcs are interior arcs; and
the third arc is a boundary arc for the state inequality constraint. Regarding interior
arcs in particular, we have:

0 =Hu = λ2(t)

0 =
d
dt
Hu = λ̇2(t) = −2x2(t)− λ1(t) + λ2(t)

0 =
d2

dt2
Hu = −2ẋ2(t)− λ̇1(t) + λ̇2(t) = −2[u(t)− x2(t)]− 2x1(t)

Hence, both interior arcs are singular arcs of order p = 1, and u?(t) = x?2(t)−x?1(t)
along these arcs. Moreover, the optimal control appears to be discontinuous at the
function between boundary and interior arcs. Again, it would be interesting to confirm
these results upon application of an indirect shooting method ( � 3.6.2.1).

Since the ODEs are solved at each iteration of the NLP solver, direct sequential methods
are often called feasible path methods. These methods are known to be very robust as
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long as the dynamic system is stable in the control/parameter range of interest. Moreover,
they guarantee the accuracy of the state variables through the error control mechanism
of the numerical integration solvers. However, finding an optimal, or even a feasible
solution, may prove difficult when the system is unstable or the response is undefined for
certain control/parameter values. In addition, much computational effort may be wasted
in obtaining accurate state values when the controls/parameters are far from their optimal
values. These considerations motivate the direct simultaneous methods which are presented
in the following subsection.

3.6.3.2 Direct Simultaneous Methods In direct simultaneous methods, the original
optimal control problem (3.201–3.206)is transcribed into a finite dimensional NLP problem
through the discretization of all the variables, i.e., both the control and the state variables.
Accordingly, this approach is often referred to as full discretization in the literature.

Regarding the control variables first, similar parameterizations as those described in the
direct sequential approach � (3.6.3.1) can be used; for the jth control variable in the control
stage k, we have

uj(t) = Ukj (t,ωk) =

N
∑

i=0

ωki,jφ
(M)
i (

t−tk−1

tk−tk−1
), tk−1 ≤ t ≤ tk,

with φ(M)
i (·) given by (3.208). In particular, piecewise constant or piecewise linear control

parameterizations are often considered in practical applications.
To approximate the state variables, on the other hand, a family of polynomials is also

considered on each interval, so that

x(t) = X
k(t, ξk), tk−1 ≤ t ≤ tk, k = 1, . . . , ns,

with ξk ∈ IRn
k
ξ . For simplicity, we shall assume subsequently that the polynomials have the

same order N for each state variable and each stage. Different polynomial representations
have been suggested in the literature:

◦ Lagrange Polynomials [35]: Similar to the control parameterization, the jth state
variable in stage k is calculated as

xj(t) = X kj (t, ξk) =

N
∑

i=0

ξki,jφ
(N)
i (

t−tk−1

tk−tk−1
), tk−1 ≤ t ≤ tk, (3.221)

with φ(N)
i (·) given by (3.208).

◦ Monomial Basis Representation [4]: The jth state variable in stage k is calculated as

xj(t) = X kj (t, ξk) = ξk0,j + (tk − tk−1)
N
∑

i=1

ξki,jΩ
(N)
i ( t−tk−1

tk−tk−1
), tk−1 ≤ t ≤ tk,

(3.222)

where Ω
(N)
i (·) is a polynomial of order N satisfying

Ω
(N)
i (0) := 0

d
dt

Ω
(N)
i (τq) := δi,q , q = 1, . . . , N,
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with collocation points 0 = τ0 ≤ τ1 < τ2 < · · · < τN ≤ 1.

By using either of the foregoing polynomial representations, the problem (3.201–3.206)
can be rewritten into the following form:

minimize:
ns
∑

k=1

∫ tk

tk−1

`(t,X k(t, ξk),Uk(t,ωk),v) dt+ φ(X ns(tns , ξ
ns),v) (3.223)

subject to: X
k
t (tk,q , ξ

k) = f(tk,q ,X
k(tk,q , ξ

k),Uk(tk,q ,ω
k),v) (3.224)

X
1(t0, ξ

1) = h(v); X
k(tk, ξ

k) = X
k−1(tk , ξ

k−1) (3.225)
ψ(Xns(tns , ξ

ns),v) = 0 (3.226)
κ(Xns(tns , ξ

ns),v) ≤ 0 (3.227)

g(tk,q ,X
k(tk,q , ξ

k),Uk(tk,q ,ω
k),v) ≤ 0 (3.228)

ξk ∈ [ξL, ξU ], ω ∈ [ωL,ωU ], v ∈ [vL,vU ], (3.229)

where tk,q := tk−1 + τq(tk − tk−1), with k = 1, . . . , ns, and q = 1, . . . , N .
A number of remarks are in order:

◦ The continuous differential equations (3.202) are discretized into (N + 1) equality
constraints (3.224) in each time stage, k = 1, . . . , ns; moreover, the conditions
(3.225) are imposed so that the state variables are continuous at the junctions between
consecutive time stages. That is, a common characteristic of direct simultaneous
methods is that the differential equations are, in general, satisfied at the solution
of the optimization problem only; for this reason, these methods are often called
infeasible path methods.

◦ The inequality state constraints (3.205) are also discretized into a finite number of
inequality constraints (3.228), which must hold at every collocation point in each
time stage. Hence, an advantage of simultaneous methods over sequential methods
is that they allow handling state inequality constraints more easily, i.e., by enforcing
interior-point inequality constraint at collocation points.

◦ The time stages t1, . . . , tns can be optimized very easily in direct simultaneous meth-
ods, together with the other parameters (ξ1, . . . , ξns ,ω1, . . . ,ωns ,v).

Unlike sequential methods, direct simultaneous methods have the advantage of not wast-
ing computational effort in obtaining feasible solutions to the ODEs, away from the solution
of the optimization problem. This also allows to handle efficiently those dynamic systems
for which instabilities occur in the range of inputs, or for which a solution does not exist
for certain inputs. On the other hand, however, only the converged solution satisfies the
ODEs, while the intermediate solutions have no physical meaning. Moreover, one does
not know a priori how many time stages and collocation points should be taken for obtain-
ing an accurate solution to the ODEs. Finally, the resulting NLP problem in the variables
(ξ1, . . . , ξns ,ω1, . . . ,ωns ,v) is a large-scale NLP problem which may be difficult to solve.
This difficulty has led to the development of special decomposition techniques to solve such
NLP problems.
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3.7 NOTES AND REFERENCES

Only a brief discussion on the problem of existence of an optimal solution has been given
in � 3.3. A comprehensive treatment of the existence problem can be found in the book
by Macki and Strauss [38, Chapter 4]. For a more mathematical presentation of existence
results, the interested reader is referred to the book by Cesari [16].

The seminal textbook for the variational approach presented in � 3.4 is the book by Bryson
and Ho [12]. The book by Kamien and Schwartz [28] has also been useful in writing this
chapter, especially regarding the interpretation of the adjoint variables.

In this chapter, we have also limited our presentation of the sufficient conditions to the
so-called Mangasarian conditions. More general sufficient conditions can be found in the
survey paper by Seierstad and Sydstæter [49]. For local sufficient conditions, we refer the
interested reader to the book by Bryson and Ho [12, Chapter 6].

Regarding � 3.5 on maximum principles for optimal control problems, the reference
textbook is that by Pontryagin and coworkers [41]; a proof of the Pontryagin Maximum
Principle can also be found in [38, Chapter 5]. The indirect adjoining approach for optimal
control problems with pure path constraints was originally introduced by Pontryagin [41].
For a recent survey on maximum principles for problems having both mixed and pure state
constraints, see the paper by [25]. A comprehensive discussion of necessary conditions for
singular control problems, including second order necessary conditions, can be found in
the paper by Kelley and coworkers [29].

For a general introduction to numerical methods for initial value problems in ODEs
and DAEs see the book by Brenan, Campbell and Petzold [11], or Ascher and Petzold [3].
Concerning the calculation of gradients for functionals with ODEs embedded, see, e.g.,
[45, 56] for the forward sensitivity approach and [54] for the adjoint sensitivity approach.
A detailed discussion of indirect solution methods for optimal control problems, including
the indirect shooting approach, can be found in [12]. Finally, for more information on direct
solution methods, see [54, 56] for the sequential approach and [8, 9] for the simultaneous
approach.
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A.1 NOTATIONS

The following notations are used throughout the textbook. Scalars are denoted by lowercase
Roman or Greek letters, e.g., k, α, and µ. IRn denotes the n-dimensional real Euclidean
space, composed of all real vectors of dimension n; such vectors are denoted by boldface
lowercase Roman or Greek letters, e.g., x, y, and ν. All vectors are column vectors unless
stated otherwise. Row vectors are the transpose of column vectors, e.g., xT denotes the row
vector (x1, . . . , xn). Matrices are denoted by san serif capital Roman or boldface capital
Greek letters, e.g., A, B, and Ψ.
C([a, b]) [resp. Ck([a, b])] stands for the set of real-valued, continuous [resp. k times

continuously differentiable] functions on the interval [a, b]; such functions are denoted by
lowercase Roman or Greek letters, e.g., f , g, andϕ. C([a, b])n [resp. Ck([a, b])n] stands for
the set of vector-valued, continuous [resp. k times continuously differentiable] functions
on the interval [a, b]; vector-valued functions are denoted by boldface lowercase Roman
letters, e.g., h and ψ.

Finally, the following abbreviations are used in this textbook:
:= “defined as...”
∈ “is an element of...” or “is in...”
/∈ “is not an element of...”
∃ “there exists...”
∀ “for each...” or “for every...”
� “end of proof.”

Nonlinear and Dynamic Optimization: From Theory to Practice. By B. Chachuat�
2007 Automatic Control Laboratory, EPFL, Switzerland
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A.2 ELEMENTARY CONCEPTS FROM REAL ANALYSIS

We recall some elementary concepts from real analysis [50].

Definition A.1 (Open Ball). The open ball of radius ε centered at x̄ is defined to be the set

Bε (x̄) := {x ∈ IRn : ‖x̄− x‖ < ε},

in any norm ‖ · ‖. The corresponding deleted open ball is defined by

Ḃε (x̄) := Bε (x̄) \ {x̄}.

Definition A.2 (Interior Point, Openness, Limit Point, Closedness, Boundedness, Com-
pactness, Boundary Point, Closure). Let D be a set in IRn, n ≥ 1.

Interior Point A point x ∈ IRn is said to be an interior point of D if there is an open ball
Bε (x) such that Bε (x) ⊂ D. The interior of a set D, denoted int (D), is the set of
interior points of D. A point x ∈ IRn is said to be an exterior point of D if it is an
interior point of IRn \D.

Openness D is said to be open if every point of D is an interior point of D. Obviously, if
D is open then int (D) = D.

Limit Point A point x̄ ∈ IRn is said to be a limit point of the set D if every open ball
Bε (x̄) contains a point x 6= x̄ such that x ∈ D. Note in particular that x̄ does not
necessarily have to be an element of D to be a limit point of D.

Closedness D is said to be closed if every limit point of D is an element of D. Note that
there do exist sets that are both open and closed, as well as sets that are neither closed
nor open.

Boundedness D is said to be bounded if there is a real number M such that

‖x‖ ≤M ∀x ∈ D

in any norm.

Compactness In IRn, D is said to be compact if it is both closed and bounded.

Boundary Point A point x̄ ∈ IRn is said to be a boundary point of the set D if every
neighborhood of x̄ contains points both inside and outside ofD. The set of boundary
point of D is denoted by ∂D.

Closure The closure of D is the set cl (D) := D ∪ L where L denotes the set of all limit
points of D.

A.3 CONVEX ANALYSIS

This subsection summarizes a number of important definitions and results related to convex
sets ( � A.3.1) and convex functions ( � A.3.2 and A.3.3). Indeed, the notions of convex sets
and convex functions play a crucial role in the theory of optimization. In particular, strong
theoretical results are available for convex optimization problems (see, e.g., � 1.3).
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A.3.1 Convex Sets

Definition A.3 (Convex Set). A set C ⊂ IRn is said to be convex if for every points
x,y ∈ C, the points

z := λx + (1− λ)y ∀λ ∈ [0, 1],

are also in the set C.

It is important to note that for a setC to be convex, (A.3) must hold for all pairs of points
in the set C. Geometrically, for C to be convex every point on the line segment connecting
any two points in C must also be in C. Fig. A.1. show an example of a convex set. Note
that the line segment joining the points x and y lies completely inside C, and this is true
for all pairs of points in C. On the other hand, Fig. A.2. shows an example of a nonconvex
set (i.e., a set that is not convex). Observe that not all points on the line segment connecting
x and y lie in the set D, immediately indicating that D in nonconvex.

PSfrag replacements x
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Figure A.1. A convex set.

PSfrag replacements
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Figure A.2. A nonconvex set.

Example A.4. The set C := {x ∈ IR2 : x1 ≥ 0, x2 ≥ 0} is convex.

Lemma A.5 (Intersection of Convex Sets). Let C1 and C2 be convex sets in IRn. Then,
C1 ∩ C2 is convex, i.e., the intersection of two convex sets in a convex set.

Proof. The proof is left to the reader as an exercise.

Remark A.6. Note that by Definition A.3, an empty set is convex (this is because no
counterexample can be found to show that it is nonconvex). That is, Lemma A.5 holds even
if C1 andC2 do not share any common elements. Note also that Lemma A.5 can be readily
extended, by induction, to the intersection of any family of convex sets.

Definition A.7 (Hyperplane, Halfspace). Let a ∈ IRn and c ∈ IR. Then, H := {x :
aTx = c} is said to be a hyperplane and H+ := {x : aTx ≥ c} is said to be a halfspace.

Theorem A.8 (Separation of a Convex Set and a Point). Let C be a nonempty, convex
set in IRn and let y /∈ C. Then, there exists a nonzero vector a ∈ IRn and a scalar c ∈ IR
such that:

aTy > c and aTx ≤ c ∀x ∈ C.
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Proof. See, e.g., [6, Theorem 2.4.4] for a proof.

In fact, aTy = c defines a separating hyperplane, as illustrated in Fig. A.3. below.
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Figure A.3. Illustration of the Separation Theorem.

Theorem A.9 (Separation of Two Convex Sets). LetC1 andC2 be two nonempty, convex
set in IRn and suppose that C1 ∩ C2 = ∅. Then, there exists a hyperplane that separates
C1 and C2; that is, there exists a nonzero vector p ∈ IRn such that

pTx1 ≥ pTx2 ∀x1 ∈ cl (C1) , ∀x2 ∈ cl (C2) .

Proof. See, e.g., [6, Theorem 2.4.8] for a proof.

Definition A.10 (Cone, Convex Cone). A nonempty set C ⊂ IRn is said to be a cone if for
every point x ∈ C,

αx ∈ C ∀α ≥ 0.

If, in addition, C is convex then it is said to be a convex cone.

A.3.2 Convex and Concave Functions

Definition A.11 (Convex Function, Strictly Convex Function). A function f : C → IR
defined on a convex set C ∈ IRn is said to be convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), (A.1)

for each x,y ∈ C and each λ ∈ (0, 1); that is, the value of the function on the line
segment connecting any two points in the convex setC lies below the line segment inC× IR
connecting the value of the function at the same two points in C. Moreover, f is said to be
strictly convex if

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y), (A.2)

for each x,y ∈ C and each λ ∈ (0, 1).

The left plot in Fig. A.4. illustrates the definition: the line segment connecting the values
of the function at any two points x and y in C lies above the function between x and y. It
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should be noted that this alone does not establish that the function is convex on C; the set
C itself should be a convex set. A function that is not convex is said to be nonconvex. the
right plot in Fig. A.4. shows an example of a nonconvex function on the set C. Note that
the dotted portion of the line segment connecting the values of the function at x and y lies
below the function. Yet, this function is convex on the set C ′.

PSfrag replacements
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f(λx + (1− λ)y)

λf(x) + (1− λ)f(y)

Figure A.4. Illustration of a convex function on C (left plot) and a nonconvex function on C (right
plot).

Example A.12. The function f(x) = |x| is convex on IR.

Definition A.13 (Concave Function, Strictly Concave Function). A function g : C → IR
defined on a convex set C ∈ IRn is said to be concave if the function f := −g is convex on
C. The function g is said to be strictly concave on C if −g is strictly convex on C.

Often, it is required that only those x ∈ IRn with gi(x) ≤ 0, i = 1, . . . ,m, are feasible
points of an optimization problem (i.e., a finite number of inequality constraints are imposed
– see, e.g., Chapter 1).

Theorem A.14. Let C be a convex set in IRn and let f : C → IR be a convex function.
Then, the level set Cα := {x ∈ C : f(x) ≤ α}, where α is a real number, is a convex set.

Proof. Let x1,x2 ∈ Cα. Clearly, x1,x2 ∈ C, and f(x1) ≤ α and f(x2) ≤ α. Let
λ ∈ (0, 1) and x = λx1 + (1− λ)x2. By convexity of C, x ∈ C. Moreover, by convexity
of f on C,

f(x) ≤ λf(x1) + (1− λ)f(x2) ≤ λα + (1− λ)α = α,

i.e., x ∈ Cα.

Corollary A.15. LetC be a convex set in IRn and let gi : C → IR, i = 1, . . . ,m, be convex
functions on C. Then, the set defined by

F := {x ∈ C : gi(x) ≤ 0, ∀i = 1, . . . , n}
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is convex.

Proof. The result is immediately evident from Theorem A.14 and Lemma A.5.

It is not uncommon that the feasible set in an optimization problems be also defined in
terms of equality constraints. Imposing an equality constraint such ash(x) = 0 is obviously
equivalent to imposing the pair of inequality constraints h(x) ≤ 0 and −h(x) ≤ 0. In
particular, an affine equality constraint, aTx = b, defines a convex feasible set, for it is both
convex and concave for the pair of inequality constraints. With a few trivial exceptions,
most nonlinear equality constraints define a nonconvex feasible set.

A.3.3 How to Detect Convexity?

In an optimization problem, convexity of the objective function and constraints is crucial,
because convex programs posses nicer theoretical properties and can be more efficiently
solved numerically than general nonconvex programs. Henceforth, it is important to know
whether a given function is convex or not.

Proposition A.16 (Operations that Preserve Convexity of Functions).

• Stability under Nonnegative Weighted Sums. Let C be a convex set in IRn. If
f : C → IRm and g : C → IRm are convex on C, then their linear combination
λf + µg, with nonnegative coefficients λ and µ, is also convex on C.

• Stability under Composition with an Affine Mapping. Let C1 and C2 be convex
sets in IRm and IRn, respectively. If g : C1 → IR is a convex function on C1, and
h : C2 → IRm is an affine mapping (i.e., h(x) := A(x) + b) with range(h) ⊂ C1,
then the composite function f : C2 → IR defined as f(x) := g [h(x)] is convex on
C2.

• Stability under (Scalar) Composition with a Nondecreasing Convex Function. LetC1

andC2 be convex sets in IR and IRn, respectively. If g : C1 → IR is a nondecreasing,
convex function on C1, and h : C2 → IR is a convex function with range(h) ⊂ C1,
then the composite function f : C2 → IR defined as f(x) := g [h(x)] is convex on
C2.

• Stability under Pointwise Supremum. LetC be a convex set in IRn. If gα : C → IRm,
α = 1, 2, . . ., are convex functions onC, then the functionx 7→ supα gα(x) is convex
on C.

Proof. The proofs are left to the reader as an exercise.

We shall now have a look to which standard functions these operations can be applied
to. The usual way of checking convexity of a “simple” function is based on differential
criteria of convexity.

Theorem A.17 (First-Order Condition of Convexity). Let C be a convex set in IRn with
a nonempty interior, and let f : C → IR be a function. Suppose f is continuous on C and
differentiable on int (C). Then f is convex on int (C) if and only if

f(y) ≥ f(x) + ∇f(x)
T
[y − x]

holds for any two points x,y ∈ C.



LINEAR SPACES vii

Theorem A.18 (Second-Order Condition of Convexity). Let C be a convex set in IRn

with a nonempty interior, and let f : C → IR be a function. Suppose f is continuous on C
and twice differentiable on int (C). Then f is convex on int (C) if and only if its Hessian
matrix H(x) is positive semidefinite at each x ∈ int (C).

With the foregoing result, it is straightforward to verify that a great variety of functions
is convex. However, a difficulty arises, e.g., if the set C is closed, since convexity can be
established on the interior of C only. The following result can be used to overcome this
difficulty.

Lemma A.19. Let C be a convex set in IRn with a nonempty interior, and let f : C → IR
be a function. If f is continuous on C and convex on int (C), then it is also convex on C.

With the foregoing rules, convexity can be established for a great variety of complicated
functions. This is illustrated in the following example.

Example A.20. Consider the exponential posynomial function f : IRn → IR defined as

f(x) =

N
∑

i=1

ci exp(aT
i x),

with positive coefficients ci. The function x 7→ exp(x) is convex on IRn, for its Hessian
matrix is positive definite at each x ∈ IRn. All functions x 7→ exp(aT

i x) are therefore
convex on IRn (stability of convexity under composition with an affine mapping). Finally,
f is convex on IRn (stability of convexityunder taking linear combinations with nonnegative
coefficients).

A.4 LINEAR SPACES

The problems considered in the Chapters 2 and 3 of this textbook consist of optimizing
a real valued function J defined on a subset D of a linear space X. This section gives a
summary of standard results for linear spaces, presupposing some familiarity with vector
space operations in IRd.

The principal requirement for a (real) linear space, also called (real) vector space, is
that it contain the sums and (real) scalar multiples of its elements. In other words, a linear
space must be closed under the operations of addition and scalar multiplication.

Definition A.21 (Linear Space). A real linear space is a nonempty set X for which two
operations called addition (denoted +) and (real) scalar multiplication (denoted ·) are de-
fined. Addition is commutative and associative, making X an Abelian group under addition.
Multiplication by scalars from the real number field is associative, and distributive with
respect to + as well as addition of scalars.

We remark without proof that the set of real-valued functions f , g, on a (nonempty) set
S forms a real linear space (or vector space) with respect to the operations of pointwise
addition:

(f + g)(x) = f(x) + g(x) ∀x ∈ S,
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and scalar multiplication:

(αf)(x) = αf(x) ∀x ∈ S, α ∈ IR.

Likewise, for each d = 1, 2, . . . the set of all d-dimensional real vector valued functions on
this set S forms a linear space with respect to the operations of component-wise addition
and scalar multiplication.

If continuity is definable on S, then C(S) (:= C0(S)), the set of continuous real-valued
functions on S, will be a real linear space since the sum of continuous functions, or the
multiple of a continuous function by a real constant, is again a continuous function. Simi-
larly, for each open subsetD of a Euclidean space and each k = 1, 2, . . ., Ck(D), the set of
functions on D having continuous partial derivatives of order lower than or equal to k, is a
real linear space, since the laws of differentiation guarantee that the sum or scalar multiple
of such functions will be another. In addition, if D is bounded with boundary ∂D, and
D̄ := D ∪ ∂D, then Ck(D̄), the subset of Ck(D̄) ∪ C(D̄) consisting of those functions
whose partial derivatives of order lower than or equal to k each admit continuous extension
to D̄, is a real linear space. For example, a function x, which is continuous on [a, b], is in
C1([a, b]) if it is continuously differentiable in (a, b) and its derivative ẋ has finite limiting
values from the right at a (denoted ẋ(a+)) and from the left at b (denoted ẋ(b−)).

Example A.22. The function x 7→ x
3
2 defines a function in C1([0, 1]), but x 7→ x

1
2 does

not.

For d = 1, 2, . . ., [C(S)]d, [Ck(D)]d, and [Ck(D̄)]d, the sets of d-dimensional vector
valued functions whose components are in C(S), Ck(D), and Ck(D̄), respectively, also
form real linear spaces.

Definition A.23 (Linear Subspace). A linear subspace, or simply a subspace, of the linear
space X is a subset which is itself a linear space under the same operations.

We note that subsets D of these spaces provide natural domain for optimization of real-
valued functions in Chapters 2 and 3. However, these subsets do not in general constitute
linear spaces themselves.

Example A.24. The subset

D := {x ∈ C([a, b]) : x(a) = 0, x(b) = 1},

is not a linear space since if x ∈ D then 2x /∈ D. (2x(b) = 2 6= 1.) On the other hand,

D := {x ∈ C([a, b]) : x(a) = 0, x(b) = 0},

is a linear space.

Definition A.25 (Functional). A function defined on a linear space X with range in IR is
called a functional.

Definition A.26 (Continuous Functional). Let (X, ‖ · ‖) be a normed linear space. A
functional F : X → IR is said to be continuous at x ∈ X, if {F(xk)} → F(x), for any
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convergent sequence {xk} → x in X. A functional is said to be continuous on X, if it is
continuous at any x ∈ X.

Analysis in IRd is described most easily through inequalities between the lengths of its
vectors. Similarly, in the real linear space X, we shall assume that we can assign to each
x ∈ X a nonnegative number, denoted ‖x‖:
Definition A.27 (Norm). A norm ‖ ·‖ on a linear space X is a nonnegative functional such
that

‖x‖ =0 if and only if x = 0 ∀x ∈ X (positive definite)

‖αx‖ =|α| ‖x‖ ∀x ∈ X, α ∈ IR (positive homogeneous)

‖x + y‖ ≤‖x‖+ ‖y‖ ∀x,y ∈ X (triangle inequality).

There may be more than one norm for a linear space, although in a specific example, one
may be more natural or more useful than another. Every norm also satisfies the so-called
reverse triangle inequality:

|‖x‖ − ‖y‖| ≤ ‖x− y‖ ∀x,y ∈ X (reverse triangle inequality).

Definition A.28 (Normed Linear Space). A normed linear space is a linear space with
the topology induced by the norm defined on it: neighborhoods of any point x̄ are the balls

Bη (x̄) := {x ∈ X : ‖x− x̄‖ < η},

with η > 0.

Two possible norms on the linear space of continuous real-values functions on [a, b] are:

‖x‖∞ := max
a≤t≤b

|x(t)| (A.3)

‖x‖p :=

(

∫ b

a

|x(t)|p dt

)
1
p

. (A.4)

Further, since Ck[a, b] ⊂ C [a, b], for each k = 1, 2, . . ., it follows that (A.3) and (A.4) also
define norms on Ck[a, b]. However, these norms do not take cognizance of the differential
properties of the functions and supply control only over their continuity. Alternative norms
on Ck[a, b] supplying control over the k first derivatives are:

‖x‖k,∞ :=‖x‖∞ + ‖x(k)‖∞ = max
a≤t≤b

|x(t)| + max
a≤t≤b

|x(k)(t)| (A.5)

‖x‖k,p :=‖x‖p + ‖x(k)‖p =

(

∫ b

a

|x(t)|p dt

)
1
p

+

(

∫ b

a

|x(k)(t)|p dt

)
1
p

. (A.6)

Norms can be defined in a likewise fashion for the linear spaces C [a, b]d, and Ck[a, b]d, with
d = 1, 2, . . .. For example,

‖x‖∞ := max
a≤t≤b

‖x(t)‖, (A.7)

defines a norm on C [a, b]d, and

‖x‖k,∞ :=‖x‖∞ + ‖x(k)‖∞ = max
a≤t≤b

‖x(t)‖+ max
a≤t≤b

‖x(k)(t)‖, (A.8)
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defines a norm on Ck[a, b]d, where ‖x(t)‖ stands for any norm in IRd.

Definition A.29 (Equivalent Norms). Let ‖ · ‖ and ‖ · ‖′ be two norm on a linear space X.
These norm are said to be equivalent norms if there exist positive real numbers α, β such
that

α‖x‖ ≤ ‖x‖′ ≤ β‖x‖.
While all norms can be shown to be equivalent on a finite dimensional linear space, this

result does not hold on infinite dimensional spaces. This is illustrated in the following:

Example A.30. Consider the linear space of continuously differentiable real-valued func-
tions C1[0, 1], supplied with the maximum norms ‖ · ‖∞ and ‖ · ‖1,∞, as defined in (A.3)
and (A.5), respectively. Let sequence of functions {xk} ∈ C1[0, 1] be defined as

xk(t) := 22ktk(1− t)k.

It is easily shown that

‖xk‖∞ =
∣

∣xk
(

1
2

)∣

∣ = 1 for each k ≥ 1.

On the other hand, the maximum value of the first derivative |ẋk(t)| on [0, 1] is attained at
t± = 1

2

√
2k−1±1√
2k−1

, yielding

‖ẋk‖∞ = |ẋk(t±)| = 2
√

2k − 1
k

k − 1

(
√

2k − 1 + 1√
2k − 1

)k (√
2k − 1− 1√

2k − 1

)k

,

As k grows large, we thus have ‖ẋk‖1,∞ = ‖xk‖∞+‖ẋk‖∞ ∼
√
k. Hence, for anyβ > 0,

there is always a k such that
‖ẋk‖1,∞ > β‖ẋk‖∞.

This proves that the norms ‖ · ‖∞ and ‖ · ‖1,∞ are not equivalent on C1[0, 1].

Definition A.31 (Convergent Sequence). A sequence {xk} in a normed linear space
(X, ‖ · ‖) is said to be convergent if there is an element x̄ ∈ X such that:

∀ε > 0, ∃N(ε) > 0 such that ‖xk − x̄‖ < ε, ∀k ≥ N.

We say that {xk} converges to x̄.

Hence, the convergence of a sequence in a linear space is reduced to the convergence
of a sequence of real numbers via the use of a norm. A point x̄ in a normed linear space
X, is said to be a limit point of a set D ∈ X if there exists a sequence {xk} in D such that
{xk} → x̄.

Definition A.32 (Cauchy Sequence). A sequence {xk} in a normed linear space (X, ‖ ·‖)
is said to be a Cauchy sequence if

∀ε > 0, ∃N > 0 such that ‖xn − xm‖ < ε, ∀n,m ≥ N.

While every convergent sequence is a Cauchy sequence, the reverse does not necessarily
hold true in a normed linear space. This motivates the following:
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Definition A.33 (Completeness, Banach Space). A normed linear space (X, ‖·‖) in which
every Cauchy sequence is a convergent sequence in X is said to be complete. A complete
normed linear space is called a Banach space.

Example A.34 (Complete Function Space). The linear space of continuous functions,
C([a, b]), equipped with the maximum norm ‖ · ‖∞, is a Banach space. The linear space of
continuously differentiable functions,C1([a, b]), equipped with the maximum norm ‖·‖1,∞,
is a Banach space too.

Example A.35 (Incomplete Function Space). Consider the function space C1[0, 1], sup-
plied with the norm ‖ · ‖p as defined in (A.4), and let {xk} ∈ C1[0, 1] be defined as earlier
in Example A.30,

xk(t) := 22ktk(1− t)k.
It can be established that the limit x̄ of {xk} as k → +∞ is a real-valued function given by

x̄(t) =

{

1 if t = 1
0 otherwise,

which is not in C1[0, 1]. In fact, x̄(t) ∈ Lp[0, 1]1, and {xk} is convergent in the function
spaceLp[0, 1]. Therefore, {xk} is a Cauchy sequence in C1[0, 1] relative to the norm ‖ · ‖p,
which does not have a limit in C1[0, 1]. We have thus established that (C1[0, 1], ‖ · ‖p is not
a complete normed linear space.

Definition A.36 (Ball). Let (X, ‖ · ‖) be a normed linear space. Given a point x̄ ∈ X and
a real number r > 0, a ball centered at x̄ and of radius r is the set

Br (x̄) := {x ∈ X : ‖x− x̄‖ < r}

Definition A.37 (Open Set, Closed Set). A subset D of a normed linear space (X, ‖ · ‖)
is said to be open if it contains a ball arount each of its points. A subset K of X is said to
be closed if its complement in X is open.

Theorem A.38 (Closed Set). Let K be a nonempty subset of a normed linear space (X, ‖·‖).
Then, K is closed if and only if every convergent sequence{xk} ∈ K converges to an element
x̄ ∈ K.

Definition A.39 (Totally Bounded Set). Let (X, ‖ · ‖) be a normed linear space. A set
D ⊂ X is said to be totally bounded if

∀ε > 0, ∃n ≥ 1 (finite) and(d1, . . . , dn) ∈ D such that D ⊆
n
⋃

k=1

Bε (dk) .

1Lp(Ω), p ≥ 1, stands for the linear space of p-integrable functions, i.e., all functions f : Ω → IR with
R

Ω f(x)pdx < ∞.
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Definition A.40 ((Sequentially) Compact Normed Linear Space). A normed linear space
(X, ‖ · ‖) is said to be sequentially compact if every sequence in X has a convergent
subsequence in X.

Theorem A.41 (Characterization of Compact Normed Linear Spaces). A normed linear
space (X, ‖ · ‖) is (sequentially) compact if and only if X is totally bounded and complete.

Definition A.42 ((Sequentially) Compact Set). Let (X, ‖ · ‖) be a normed linear space.
A set K ⊂ X is said to be sequentially compact, or simply compact, if every subsequence
in K has a subsequence that converges to a point in K.

Theorem A.43 (Characterization of Compact Sets). A subset K of a compact normed
linear space (X, ‖ · ‖) is compact if and only if it is closed.

In particular, it should be noted that a compact subset of a normed linear space is both
closed and bounded. However, the converse is true only for finite dimensional spaces.

We close this subsection with the extension of Weierstrass’ Theorem 1.14 (p. 7) to general
normed linear spaces:

Theorem A.44 (Weierstrass’ Theorem for Normed Linear Spaces). A continuous func-
tional J on a compact subset K of a compact normed linear space (X, ‖ · ‖) assumes both
its maximum and minimum values at points in K. In particular, these values are finite.

A.5 FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

This section states some fundamental properties of the solutions of ordinary differential
equations (ODEs), such as existence, uniqueness, continuous dependence on initial con-
ditions and parameters, and differentiabililty. These properties are essential for the state
equation ẋ = f (t,x) to be a useful mathematical model of a physical system.

A.5.1 Existence and Uniqueness

For a mathematical model of a given system to predict the future state of that system from
its current state at t0, the initial value problem (IVP)

ẋ =f(t,x); x(t0) = x0, (A.9)

withx ∈ IRnx and f : IR×IRnx → IRnx , must have a unique solution. By a solution of (A.9)
over an interval [t0, tf], we mean a continuous vector-valued function x : [t0, tf] → IRnx ,
such that ẋ(t) is defined and ẋ(t) = f(t,x(t)), for all t ∈ [t0, tf]. If f(t,x) is continuous
both in t and x, then the solution x(t) will be continuously differentiable. We shall assume
herein that f(t,x) is continuous in x, but only piecewise continuous in t, in which case,
a solution x(t) could only be piecewise continuously differentiable, i.e., x ∈ Ĉ1[t0, tf].
The assumption that f(t,x) be piecewise continuous in t allows us to include the case
wherein f(t,x(t)) := g(t,u(t),x(t)) depends on a time-varying input u(t) ∈ IRnu that
may experience step changes with time, e.g., u ∈ Ĉ [t0, tf].

Prior to giving local existence and uniqueness conditions for the solution to an IVP in
ODEs, we need the following:
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Definition A.45 (Local Lipschitzness). The function f(x) is said to be Lipschitz at x0 ∈
IRnx if there exist constants K ≥ 0 and η > 0 such that2

‖f(x)− f(y)‖ ≤ K‖x− y‖, (A.10)

for every x,y ∈ Bη (x0). Moreover, f(x) is said to be locally Lipschitz on X , an open
connected subset of IRnx , if it is Lipschitz at each x0 ∈ X .

Likewise, the function f (t,x), t ∈ [t0, tf], is said to be Lipschitz at x0 ∈ IRnx provided
the Lipschitz condition (A.10) holds uniformly in t ∈ [t0, tf]; f(t,x) is said to be locally
Lipschitz on X for t ∈ [t0, tf] provided that it is Lipschitz at any point x0 ∈ X .

Note, in particular, that the Lipschitz property is stronger than continuity, but weaker
than continuous differentiability. We are now ready to state the following:

Theorem A.46 (Local Existence and Uniqueness). Let f(t,x) be piecewise continuous
in t, and Lipschitz at x0 ∈ IRnx for t ∈ [t0, tf]. Then, there exists some δ > 0 such that the
state equation ẋ = f(t,x) with x(t0) = x0 has a unique solution over [t0, t0 + δ].

The key assumption in Theorem A.46 is the Lipschitz condition at x0. Strictly, only
continuity of f(t,x) with respect to x is needed to ensure existence of a solution. However,
continuity is not sufficient to ensure uniqueness of that solution as illustrated subsequently:

Example A.47. The scalar differential equation

ẋ(t) = [x(t)]
1
3 ,

with initial condition x(0) = 0 has a solution x(t) = [ 23 t]
3
2 for each t > 0. This solution

is not unique, however, since x(t) = 0, ∀t > 0 is another solution.

The foregoing Theorem A.46 gives conditions under which a solution to an IVP in ODEs
of the form (A.9) exists and is unique over an interval [t0, t0+δ], where δmay be very small.
In other words, we have no control on δ, and cannot guarantee existence and uniqueness
over a given time interval [t0, tf]. Starting at time t0, with an initial state x(t0) = x0,
Theorem A.46 shows that there is a positive constant δ (dependent on x0) such that the
state equation (A.9) has a unique solution over the time interval [t0, t0 + δ]. Then, taking
t0 + δ as a new initial time and x(t0 + δ) as a new initial state, one may try to apply
Theorem A.46 to establish existence and uniqueness of the solution beyond t0 + δ. If the
conditions of the theorem are satisfied at (t0 + δ,x(t0 + δ)), then there exists δ2 > 0 such
that the equation has a unique solution over [t0+δ, t0+δ+δ2], that passes through the point
(t0 +δ,x(t0 +δ)). The solutions over [t0, t0 +δ] and [t0 +δ, t0 +δ+δ2] can now be pieced
together to establish the existence of a unique solution over [t0, t0 + δ+ δ2]. This idea can
be repeated to keep extending the solution. However, in general, the interval of existence of
the solution cannot be extended indefinitely because the conditions of Theorem A.46 may
cease to hold. In other words, there is a maximum interval [t0, T ) where the unique solution
starting at (t0, x0) exists. Clearly, T may be less than tf, in which case the solution leaves
any compact set over which f is locally Lipschitz in x as t → T . The term finite escape
time is used to describe this phenomenon.

2Here, ‖ · ‖ stands for any norm in IRnx .
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Example A.48. Consider the scalar differential equation

ẋ(t) = [x(t)]2,

with x(0) = 1. The function f(x) = x2 is locally Lipschitz on IR. Hence, it is Lipschitz
on any compact subset of IR. However, the unique solution

x(t) =
1

1− t ,

passing through the point (0, 1), exists over [0, 1). As t→ 1, x(t) leaves any compact set.

In view of the preceding discussion, one may ask the question whether additional con-
ditions could be imposed, if any, so that a solution can be extended indefinitely. Prior to
giving one such condition, we need the following:

Definition A.49 (Global Lipschitzness). The function f(x) is said to be globally Lipschitz
if there exists a constant K ≥ 0 such that

‖f(x)− f(y)‖ ≤ K‖x− y‖, (A.11)

for every x,y ∈ IRnx . (Here, K must be the same for every pair of points x, y in IRnx .)
Likewise, the function f(t,x) is said to be globally Lipschitz for t ∈ [t0, tf], provided that
(A.11) holds for every x,y ∈ IRnx , uniformly in t ∈ [t0, tf].

The global Lipschitzness property is sufficient for a solution to be extended indefinitely:

Theorem A.50 (Global Existence and Uniqueness I). Let f(t,x) be piecewise continuous
in t, and globally Lipschitz in x, for t ∈ [t0, tf]. Then, the state equation ẋ = f (t,x) with
x(t0) = x0 has a unique solution over [t0, tf].

Example A.51. Consider the linear system

ẋ(t) = A(t)x(t) + b(t), (A.12)

where the elements of A ∈ IRnx×nx and b ∈ IRnx are piecewise continuous functions of t.
Over any finite time interval [t0, tf], the elements of A(t) are bounded. Hence, ‖A(t)‖ ≤ a,
where ‖ · ‖ stands for any any matrix norm, and we have

‖f(t,x)− f(t,y)‖ = ‖A(t) (x− y) ‖ = ‖A(t)‖ ‖x− y‖ ≤ a‖x− y‖,

for every x,y ∈ IRnx . Therefore, Theorem A.50 applies and the linear system (A.12) has
a unique solution over [t0, tf]. Since t1 can be arbitrarily large, we can also conclude that a
linear system has a unique solution, provided that A(t) and b(t) are piecewise continuous
for all t ≥ t0. Hence, a linear system cannot have a finite escape time.

In view of the conservative nature of the global Lipschitz condition, it would be useful to
have a global existence and uniqueness theorem requiring the function f to be only locally
Lipschitz. The next theorem achieves that at the expense of having to know more about the
solution of the system:
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Theorem A.52 (Global Existence and Uniqueness II). Let f(t,x)be piecewise continuous
in t, and locally Lipschitz in x, for all t ≥ t0 and all x ∈ D ⊂ IRnx . Let also X be a
compact subset of D, x0 ∈ X , and suppose it is known that every solution of

ẋ = f(t,x); x(t0) = x0,

lies entirely in X . Then, there is a unique solution that is defined for all t ≥ t0.

Example A.53. Consider the scalar differential equation

ẋ(t) = f(x) := −[x(t)]3,

with x(0) = a. Observe that the function f is locally Lipschitz on IR, but does not satisfy
a global Lipschitz condition since the Jacobian fx(x) = −3x2 is not globally bounded.
That is, Theorem A.50 does not apply. Now, remarking that, at any time instant t ≥ 0,
ẋ(t) ≤ 0 when x(t) ≥ 0 and ẋ(t) ≥ 0 when x(t) ≤ 0, a solution cannot leave the compact
set X := {x ∈ IR : |x| ≤ |a|}. Thus, without calculating the solution, we conclude by
Theorem A.52 that the differential equation has a unique solution for all t ≥ 0.

A.5.2 Continuous Dependence on Initial Conditions and Parameters

We now turn to the problem of continuous dependence on initial conditions and parameters
for the IVP in ODEs

ẋ = f(t,x,p); x(t0;p) = x0, (A.13)

with p ∈ IRnp being constant parameters, e.g., representing physical parameters of the
system. Continuous dependence is an important property that any model of interest should
possess. It is defined as follows:

Definition A.54 (Continuous Dependence on Initial Conditions and Parameters). Let
x(t;p0) be a solution of (A.13), with x(t0;p

0) = x0
0, defined on [t0, tf]. Then, x(t;p0) is

said to depend continuously on x0 and p if, for any ε > 0, there is δ > 0 such that for all
x1

0 ∈ Bδ

(

x0
0

)

and p1 ∈ Bδ

(

p0
)

, (A.13) has a unique solution x(t;p1), defined on [t0, tf],
with x(t0;p

1) = x1
0, and x(t;p1) satisfies

‖x(t;p1)− x(t;p0)‖ < ε, ∀t ∈ [t0, tf].

We can now state the main theorem on the continuity of solutions in terms of initial states
and parameters:

Theorem A.55 (Continuous Dependence on Initial Conditions and Parameters). Let
X ⊂ IRnx be an open connected set, and p0 ∈ IRnp . Suppose that f(t,x,p) is piecewise
continuous in (t,x,p) and locally Lipschitz (uniformly in t andp) on [t0, tf]×X×Bη

(

p0
)

,
for some η > 0. Let x(t;p0) be a solution of ẋ = f(t,x,p) with x(t0;p

0) := x0
0 ∈ X , and

suppose that x(t;p0) exists and belongs to X for all t ∈ [t0, tf]. Then, x(t;p0) depends
continuously on x0 and p.
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A.5.3 Differentiability of Solutions

Suppose that f(t,x,p) is continuous in (t,x,p) and has continuous first partial derivatives
with respect to x and p for all (t,x,p) ∈ [t0, tf]× IRnx × IRnp . Suppose also that h(p) is
continuous and has continuous first partial derivatives with respect to p in IRnp . Let p0 be
a nominal value of p, and suppose that the nominal state equation

ẋ = f(t,x,p0); x(t0;p
0) = h(p0), (A.14)

has a unique solution x(t;p0) over [t0, tf]. From Theorem A.55, we know that for all p
sufficiently close to p0, the state equation

ẋ = f(t,x,p); x(t0;p) = h(p),

has a unique solution x(t;p) over [t0, tf] that is close to the nominal solution x(t;p0).
The continuous differentiability of f with respect to x and p, together with the continu-
ous differentiability of h with respect to p, implies the additional property that x(t;p) is
differentiable with respect to p near p0, at each t ∈ [t0, tf].3 This is easily seen upon writing

x(t;p) = h(p) +

∫ t

t0

f(τ,x(τ ;p),p) dτ,

and then taking partial derivatives with respect to p,

xp(t;p) = hp(p) +

∫ t

t0

[fx(τ,x(τ ;p),p)xp(τ ;p) + fp(τ,x(τ ;p),p)] dτ. (A.15)

(See Theorem 2.A.59 on p. 102 for differentiation under the integral sign.)

A.6 NOTES AND REFERENCES

There are many excellent textbooks on real analysis. We just mention here the textbooks
by Rudin [46] and Sohrab [50].

The material presented in Section A.3 is mostly a summary of the material in Chapters 2
and 3 of the book by Bazaraa, Sherali and Shetty [6], where most of the omitted proofs can
be found. See also Chapters 2 and 3 of the book by Boyd and Vandenberghe [10].4 The
classical, comprehensive text on convex analysis is Rockafellar’s book [44].

Similarly, there are many excellent textbooks on functional analysis. A particularly
accessible introductory textbook is that by Kreysig [33], whose only real prerequisites are
a solid understanding of calculus and some familiarity with Linear Algebra. The classical
textbooks in functional analysis are Rudin’s book [47] as well as Lax’s book [34].

Finally, the summary on nonlinear differential equations presented in Section A.3 is
mostly taken from the excellent textbook by Khalil [30, Chapter 3].

3This result can be readily extended to the solution x(t; p) being Ck with respect to p near p0, at each t ∈ [t0, tf],
when f and h are themselves Ck with respect to (x,p) and p, respectively.

4An electronic copy of this book can be obtained at http://www.stanford.edu/ boyd/cvxbook/.
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